|
|
@@ -0,0 +1,488 @@
|
|
|
+#include "BIQUADF32.h"
|
|
|
+#include "Error.h"
|
|
|
+
|
|
|
+#define SNR_THRESHOLD 98
|
|
|
+
|
|
|
+/*
|
|
|
+
|
|
|
+Reference patterns are generated with
|
|
|
+a double precision computation.
|
|
|
+
|
|
|
+*/
|
|
|
+#define REL_ERROR (1.2e-3)
|
|
|
+
|
|
|
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
+static __ALIGNED(8) float32_t coeffArray[32];
|
|
|
+#endif
|
|
|
+
|
|
|
+ void BIQUADF32::test_biquad_cascade_df1_ref()
|
|
|
+ {
|
|
|
+
|
|
|
+
|
|
|
+ float32_t *statep = state.ptr();
|
|
|
+ float32_t *debugstatep = debugstate.ptr();
|
|
|
+
|
|
|
+ const float32_t *coefsp = coefs.ptr();
|
|
|
+
|
|
|
+ const float32_t *inputp = inputs.ptr();
|
|
|
+ float32_t *outp = output.ptr();
|
|
|
+
|
|
|
+ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
+ arm_biquad_mod_coef_f32 *coefsmodp = (arm_biquad_mod_coef_f32*)vecCoefs.ptr();
|
|
|
+ #endif
|
|
|
+
|
|
|
+ int i,j;
|
|
|
+ int blockSize;
|
|
|
+ int numTaps;
|
|
|
+ int nb=0;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ Python script is generating different tests with
|
|
|
+ different blockSize and numTaps.
|
|
|
+
|
|
|
+ We loop on those configs.
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+ blockSize = inputs.nbSamples() >> 1;
|
|
|
+ numTaps = coefs.nbSamples();
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
+
|
|
|
+ */
|
|
|
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
+ arm_biquad_cascade_df1_mve_init_f32(&this->Sdf1,3,coefsp,coefsmodp,statep);
|
|
|
+#else
|
|
|
+ arm_biquad_cascade_df1_init_f32(&this->Sdf1,3,coefsp,statep);
|
|
|
+#endif
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ Python script is filtering a 2*blockSize number of samples.
|
|
|
+ We do the same filtering in two pass to check (indirectly that
|
|
|
+ the state management of the fir is working.)
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+ arm_biquad_cascade_df1_f32(&this->Sdf1,inputp,outp,blockSize);
|
|
|
+
|
|
|
+ memcpy(debugstatep,statep,3*4*sizeof(float32_t));
|
|
|
+ debugstatep += 3*4;
|
|
|
+
|
|
|
+ outp += blockSize;
|
|
|
+
|
|
|
+ inputp += blockSize;
|
|
|
+ arm_biquad_cascade_df1_f32(&this->Sdf1,inputp,outp,blockSize);
|
|
|
+ outp += blockSize;
|
|
|
+
|
|
|
+ memcpy(debugstatep,statep,3*4*sizeof(float32_t));
|
|
|
+ debugstatep += 3*4;
|
|
|
+
|
|
|
+ ASSERT_EMPTY_TAIL(output);
|
|
|
+
|
|
|
+ ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
|
|
|
+
|
|
|
+ ASSERT_REL_ERROR(output,ref,REL_ERROR);
|
|
|
+
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ void BIQUADF32::test_biquad_cascade_df2T_ref()
|
|
|
+ {
|
|
|
+
|
|
|
+
|
|
|
+ float32_t *statep = state.ptr();
|
|
|
+
|
|
|
+#if !defined(ARM_MATH_NEON)
|
|
|
+ const float32_t *coefsp = coefs.ptr();
|
|
|
+#else
|
|
|
+ float32_t *coefsp = coefs.ptr();
|
|
|
+#endif
|
|
|
+
|
|
|
+ const float32_t *inputp = inputs.ptr();
|
|
|
+ float32_t *outp = output.ptr();
|
|
|
+
|
|
|
+ int i,j;
|
|
|
+ int blockSize;
|
|
|
+ int numTaps;
|
|
|
+ int nb=0;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ Python script is generating different tests with
|
|
|
+ different blockSize and numTaps.
|
|
|
+
|
|
|
+ We loop on those configs.
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+ blockSize = inputs.nbSamples() >> 1;
|
|
|
+ numTaps = coefs.nbSamples();
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
+
|
|
|
+ */
|
|
|
+#if !defined(ARM_MATH_NEON)
|
|
|
+ arm_biquad_cascade_df2T_init_f32(&this->Sdf2T,3,coefsp,statep);
|
|
|
+#else
|
|
|
+ float32_t *vecCoefsPtr = vecCoefs.ptr();
|
|
|
+
|
|
|
+ arm_biquad_cascade_df2T_init_f32(&this->Sdf2T,
|
|
|
+ 3,
|
|
|
+ vecCoefsPtr,
|
|
|
+ statep);
|
|
|
+
|
|
|
+ // Those Neon coefs must be computed from original coefs
|
|
|
+ arm_biquad_cascade_df2T_compute_coefs_f32(&this->Sdf2T,3,coefsp);
|
|
|
+#endif
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ Python script is filtering a 2*blockSize number of samples.
|
|
|
+ We do the same filtering in two pass to check (indirectly that
|
|
|
+ the state management of the fir is working.)
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+ arm_biquad_cascade_df2T_f32(&this->Sdf2T,inputp,outp,blockSize);
|
|
|
+ outp += blockSize;
|
|
|
+
|
|
|
+
|
|
|
+ inputp += blockSize;
|
|
|
+ arm_biquad_cascade_df2T_f32(&this->Sdf2T,inputp,outp,blockSize);
|
|
|
+ outp += blockSize;
|
|
|
+
|
|
|
+
|
|
|
+ ASSERT_EMPTY_TAIL(output);
|
|
|
+
|
|
|
+ ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
|
|
|
+
|
|
|
+ ASSERT_REL_ERROR(output,ref,REL_ERROR);
|
|
|
+
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ void BIQUADF32::test_biquad_cascade_df1_rand()
|
|
|
+ {
|
|
|
+
|
|
|
+
|
|
|
+ float32_t *statep = state.ptr();
|
|
|
+
|
|
|
+ const float32_t *coefsp = coefs.ptr();
|
|
|
+ const int16_t *configsp = configs.ptr();
|
|
|
+
|
|
|
+ const float32_t *inputp = inputs.ptr();
|
|
|
+ float32_t *outp = output.ptr();
|
|
|
+
|
|
|
+ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
+ arm_biquad_mod_coef_f32 *coefsmodp = (arm_biquad_mod_coef_f32*)vecCoefs.ptr();
|
|
|
+ #endif
|
|
|
+
|
|
|
+ int blockSize;
|
|
|
+ int numStages;
|
|
|
+ int nb=0;
|
|
|
+ int i;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ for(i=0;i < configs.nbSamples(); i+=2)
|
|
|
+ {
|
|
|
+ /*
|
|
|
+
|
|
|
+ Python script is generating different tests with
|
|
|
+ different blockSize and numTaps.
|
|
|
+
|
|
|
+ We loop on those configs.
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+
|
|
|
+ numStages = configsp[0];
|
|
|
+ blockSize = configsp[1];
|
|
|
+
|
|
|
+ configsp += 2;
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
+
|
|
|
+ */
|
|
|
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
+ arm_biquad_cascade_df1_mve_init_f32(&this->Sdf1,numStages,coefsp,coefsmodp,statep);
|
|
|
+#else
|
|
|
+ arm_biquad_cascade_df1_init_f32(&this->Sdf1,numStages,coefsp,statep);
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ Python script is filtering a 2*blockSize number of samples.
|
|
|
+ We do the same filtering in two pass to check (indirectly that
|
|
|
+ the state management of the fir is working.)
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+ arm_biquad_cascade_df1_f32(&this->Sdf1,inputp,outp,blockSize);
|
|
|
+
|
|
|
+ inputp += blockSize;
|
|
|
+ outp += blockSize;
|
|
|
+ coefsp += numStages * 5;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ }
|
|
|
+ ASSERT_EMPTY_TAIL(output);
|
|
|
+
|
|
|
+ ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
|
|
|
+
|
|
|
+ ASSERT_REL_ERROR(output,ref,REL_ERROR);
|
|
|
+
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ void BIQUADF32::test_biquad_cascade_df2T_rand()
|
|
|
+ {
|
|
|
+
|
|
|
+
|
|
|
+ float32_t *statep = state.ptr();
|
|
|
+ const int16_t *configsp = configs.ptr();
|
|
|
+
|
|
|
+#if !defined(ARM_MATH_NEON)
|
|
|
+ const float32_t *coefsp = coefs.ptr();
|
|
|
+#else
|
|
|
+ float32_t *coefsp = coefs.ptr();
|
|
|
+#endif
|
|
|
+
|
|
|
+ const float32_t *inputp = inputs.ptr();
|
|
|
+ float32_t *outp = output.ptr();
|
|
|
+
|
|
|
+ int blockSize;
|
|
|
+ int numStages;
|
|
|
+ int nb=0;
|
|
|
+
|
|
|
+ int i;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ for(i=0;i < configs.nbSamples(); i+=2)
|
|
|
+ {
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ Python script is generating different tests with
|
|
|
+ different blockSize and numTaps.
|
|
|
+
|
|
|
+ We loop on those configs.
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+ numStages = configsp[0];
|
|
|
+ blockSize = configsp[1];
|
|
|
+
|
|
|
+ configsp += 2;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
+
|
|
|
+ */
|
|
|
+#if !defined(ARM_MATH_NEON)
|
|
|
+ arm_biquad_cascade_df2T_init_f32(&this->Sdf2T,numStages,coefsp,statep);
|
|
|
+#else
|
|
|
+ float32_t *vecCoefsPtr = vecCoefs.ptr();
|
|
|
+
|
|
|
+ arm_biquad_cascade_df2T_init_f32(&this->Sdf2T,
|
|
|
+ numStages,
|
|
|
+ vecCoefsPtr,
|
|
|
+ statep);
|
|
|
+
|
|
|
+ // Those Neon coefs must be computed from original coefs
|
|
|
+ arm_biquad_cascade_df2T_compute_coefs_f32(&this->Sdf2T,numStages,coefsp);
|
|
|
+#endif
|
|
|
+ coefsp += numStages * 5;
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ Python script is filtering a 2*blockSize number of samples.
|
|
|
+ We do the same filtering in two pass to check (indirectly that
|
|
|
+ the state management of the fir is working.)
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+ arm_biquad_cascade_df2T_f32(&this->Sdf2T,inputp,outp,blockSize);
|
|
|
+ outp += blockSize;
|
|
|
+ inputp += blockSize;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ ASSERT_EMPTY_TAIL(output);
|
|
|
+
|
|
|
+ ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
|
|
|
+
|
|
|
+ ASSERT_REL_ERROR(output,ref,REL_ERROR);
|
|
|
+
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ void BIQUADF32::test_biquad_cascade_stereo_df2T_rand()
|
|
|
+ {
|
|
|
+
|
|
|
+
|
|
|
+ float32_t *statep = state.ptr();
|
|
|
+ const int16_t *configsp = configs.ptr();
|
|
|
+
|
|
|
+ const float32_t *coefsp = coefs.ptr();
|
|
|
+
|
|
|
+
|
|
|
+ const float32_t *inputp = inputs.ptr();
|
|
|
+ float32_t *outp = output.ptr();
|
|
|
+
|
|
|
+ int blockSize;
|
|
|
+ int numStages;
|
|
|
+ int nb=0;
|
|
|
+
|
|
|
+ int i;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ for(i=0;i < configs.nbSamples(); i+=2)
|
|
|
+ {
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ Python script is generating different tests with
|
|
|
+ different blockSize and numTaps.
|
|
|
+
|
|
|
+ We loop on those configs.
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+ numStages = configsp[0];
|
|
|
+ blockSize = configsp[1];
|
|
|
+
|
|
|
+ configsp += 2;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ The filter is initialized with the coefs, blockSize and numTaps.
|
|
|
+
|
|
|
+ */
|
|
|
+ arm_biquad_cascade_stereo_df2T_init_f32(&this->SStereodf2T,numStages,coefsp,statep);
|
|
|
+
|
|
|
+ coefsp += numStages * 5;
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ Python script is filtering a 2*blockSize number of samples.
|
|
|
+ We do the same filtering in two pass to check (indirectly that
|
|
|
+ the state management of the fir is working.)
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+ arm_biquad_cascade_stereo_df2T_f32(&this->SStereodf2T,inputp,outp,blockSize);
|
|
|
+ outp += 2*blockSize;
|
|
|
+ inputp += 2*blockSize;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ ASSERT_EMPTY_TAIL(output);
|
|
|
+
|
|
|
+ ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
|
|
|
+
|
|
|
+ ASSERT_REL_ERROR(output,ref,REL_ERROR);
|
|
|
+
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ void BIQUADF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
|
|
|
+ {
|
|
|
+
|
|
|
+ Testing::nbSamples_t nb=MAX_NB_SAMPLES;
|
|
|
+
|
|
|
+
|
|
|
+ switch(id)
|
|
|
+ {
|
|
|
+ case BIQUADF32::TEST_BIQUAD_CASCADE_DF1_REF_1:
|
|
|
+ debugstate.create(2*64,BIQUADF32::STATE_F32_ID,mgr);
|
|
|
+
|
|
|
+ inputs.reload(BIQUADF32::BIQUADINPUTS_F32_ID,mgr);
|
|
|
+ coefs.reload(BIQUADF32::BIQUADCOEFS_F32_ID,mgr);
|
|
|
+ ref.reload(BIQUADF32::BIQUADREFS_F32_ID,mgr);
|
|
|
+ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
+ /* Max num stages is 47 in Python script */
|
|
|
+ vecCoefs.create(32*47,BIQUADF32::OUT_F32_ID,mgr);
|
|
|
+ #endif
|
|
|
+ break;
|
|
|
+
|
|
|
+ case BIQUADF32::TEST_BIQUAD_CASCADE_DF2T_REF_2:
|
|
|
+ vecCoefs.create(64,BIQUADF32::OUT_F32_ID,mgr);
|
|
|
+
|
|
|
+ inputs.reload(BIQUADF32::BIQUADINPUTS_F32_ID,mgr);
|
|
|
+ coefs.reload(BIQUADF32::BIQUADCOEFS_F32_ID,mgr);
|
|
|
+ ref.reload(BIQUADF32::BIQUADREFS_F32_ID,mgr);
|
|
|
+ break;
|
|
|
+
|
|
|
+ case BIQUADF32::TEST_BIQUAD_CASCADE_DF1_RAND_3:
|
|
|
+
|
|
|
+ inputs.reload(BIQUADF32::ALLBIQUADINPUTS_F32_ID,mgr);
|
|
|
+ coefs.reload(BIQUADF32::ALLBIQUADCOEFS_F32_ID,mgr);
|
|
|
+ ref.reload(BIQUADF32::ALLBIQUADREFS_F32_ID,mgr);
|
|
|
+ configs.reload(BIQUADF32::ALLBIQUADCONFIGS_S16_ID,mgr);
|
|
|
+ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
+ /* Max num stages is 47 in Python script */
|
|
|
+ vecCoefs.create(32*47,BIQUADF32::OUT_F32_ID,mgr);
|
|
|
+ #endif
|
|
|
+ break;
|
|
|
+
|
|
|
+ case BIQUADF32::TEST_BIQUAD_CASCADE_DF2T_RAND_4:
|
|
|
+ vecCoefs.create(512,BIQUADF32::OUT_F32_ID,mgr);
|
|
|
+
|
|
|
+ inputs.reload(BIQUADF32::ALLBIQUADINPUTS_F32_ID,mgr);
|
|
|
+ coefs.reload(BIQUADF32::ALLBIQUADCOEFS_F32_ID,mgr);
|
|
|
+ ref.reload(BIQUADF32::ALLBIQUADREFS_F32_ID,mgr);
|
|
|
+ configs.reload(BIQUADF32::ALLBIQUADCONFIGS_S16_ID,mgr);
|
|
|
+ break;
|
|
|
+
|
|
|
+ case BIQUADF32::TEST_BIQUAD_CASCADE_STEREO_DF2T_RAND_5:
|
|
|
+
|
|
|
+ inputs.reload(BIQUADF32::ALLBIQUADSTEREOINPUTS_F32_ID,mgr);
|
|
|
+ coefs.reload(BIQUADF32::ALLBIQUADCOEFS_F32_ID,mgr);
|
|
|
+ ref.reload(BIQUADF32::ALLBIQUADSTEREOREFS_F32_ID,mgr);
|
|
|
+ configs.reload(BIQUADF32::ALLBIQUADCONFIGS_S16_ID,mgr);
|
|
|
+ break;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ output.create(ref.nbSamples(),BIQUADF32::OUT_F32_ID,mgr);
|
|
|
+
|
|
|
+ state.create(128,BIQUADF32::STATE_F32_ID,mgr);
|
|
|
+
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ void BIQUADF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
|
|
|
+ {
|
|
|
+ output.dump(mgr);
|
|
|
+ switch(id)
|
|
|
+ {
|
|
|
+ case BIQUADF32::TEST_BIQUAD_CASCADE_DF1_REF_1:
|
|
|
+ debugstate.dump(mgr);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|