| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- /*
- * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /* ----------------------------------------------------------------------
- * Project: CMSIS NN Library
- * Title: arm_softmax_q7.c
- * Description: Q7 softmax function
- *
- * $Date: 17. January 2018
- * $Revision: V.1.0.0
- *
- * Target Processor: Cortex-M cores
- *
- * -------------------------------------------------------------------- */
- #include "arm_math.h"
- #include "arm_nnfunctions.h"
- /**
- * @ingroup groupNN
- */
- /**
- * @addtogroup Softmax
- * @{
- */
- /**
- * @brief Q7 softmax function
- * @param[in] vec_in pointer to input vector
- * @param[in] dim_vec input vector dimention
- * @param[out] p_out pointer to output vector
- * @return none.
- *
- * @details
- *
- * Here, instead of typical natural logarithm e based softmax, we use
- * 2-based softmax here, i.e.,:
- *
- * y_i = 2^(x_i) / sum(2^x_j)
- *
- * The relative output will be different here.
- * But mathematically, the gradient will be the same
- * with a log(2) scaling factor.
- *
- */
- void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out)
- {
- q31_t sum;
- int16_t i;
- q15_t min, max;
- max = -257;
- min = 257;
- for (i = 0; i < dim_vec; i++)
- {
- if (vec_in[i] > max)
- {
- max = vec_in[i];
- }
- if (vec_in[i] < min)
- {
- min = vec_in[i];
- }
- }
- /* we ignore really small values
- * anyway, they will be 0 after shrinking
- * to q7_t
- */
- if (max - min > 8)
- {
- min = max - 8;
- }
- sum = 0;
- for (i = 0; i < dim_vec; i++)
- {
- sum += 0x1 << (vec_in[i] - min);
- }
- for (i = 0; i < dim_vec; i++)
- {
- /* we leave 7-bit dynamic range, so that 128 -> 100% confidence */
- p_out[i] = (q7_t) __SSAT(((0x1 << (vec_in[i] - min + 20)) / sum) >> 13, 8);
- }
- }
- /**
- * @} end of Softmax group
- */
|