group__CFFT__CIFFT.html 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  2. <html xmlns="http://www.w3.org/1999/xhtml">
  3. <head>
  4. <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
  5. <meta http-equiv="X-UA-Compatible" content="IE=9"/>
  6. <title>Complex FFT Tables</title>
  7. <title>CMSIS-DSP: Complex FFT Tables</title>
  8. <link href="tabs.css" rel="stylesheet" type="text/css"/>
  9. <link href="cmsis.css" rel="stylesheet" type="text/css" />
  10. <script type="text/javascript" src="jquery.js"></script>
  11. <script type="text/javascript" src="dynsections.js"></script>
  12. <script type="text/javascript" src="printComponentTabs.js"></script>
  13. <link href="navtree.css" rel="stylesheet" type="text/css"/>
  14. <script type="text/javascript" src="resize.js"></script>
  15. <script type="text/javascript" src="navtree.js"></script>
  16. <script type="text/javascript">
  17. $(document).ready(initResizable);
  18. $(window).load(resizeHeight);
  19. </script>
  20. <link href="search/search.css" rel="stylesheet" type="text/css"/>
  21. <script type="text/javascript" src="search/search.js"></script>
  22. <script type="text/javascript">
  23. $(document).ready(function() { searchBox.OnSelectItem(0); });
  24. </script>
  25. </head>
  26. <body>
  27. <div id="top"><!-- do not remove this div, it is closed by doxygen! -->
  28. <div id="titlearea">
  29. <table cellspacing="0" cellpadding="0">
  30. <tbody>
  31. <tr style="height: 46px;">
  32. <td id="projectlogo"><img alt="Logo" src="CMSIS_Logo_Final.png"/></td>
  33. <td style="padding-left: 0.5em;">
  34. <div id="projectname">CMSIS-DSP
  35. &#160;<span id="projectnumber">Version 1.8.0</span>
  36. </div>
  37. <div id="projectbrief">CMSIS DSP Software Library</div>
  38. </td>
  39. </tr>
  40. </tbody>
  41. </table>
  42. </div>
  43. <!-- end header part -->
  44. <div id="CMSISnav" class="tabs1">
  45. <ul class="tablist">
  46. <script type="text/javascript">
  47. <!--
  48. writeComponentTabs.call(this);
  49. //-->
  50. </script>
  51. </ul>
  52. </div>
  53. <!-- Generated by Doxygen 1.8.6 -->
  54. <script type="text/javascript">
  55. var searchBox = new SearchBox("searchBox", "search",false,'Search');
  56. </script>
  57. <div id="navrow1" class="tabs">
  58. <ul class="tablist">
  59. <li><a href="index.html"><span>Main&#160;Page</span></a></li>
  60. <li><a href="pages.html"><span>Usage&#160;and&#160;Description</span></a></li>
  61. <li><a href="modules.html"><span>Reference</span></a></li>
  62. <li>
  63. <div id="MSearchBox" class="MSearchBoxInactive">
  64. <span class="left">
  65. <img id="MSearchSelect" src="search/mag_sel.png"
  66. onmouseover="return searchBox.OnSearchSelectShow()"
  67. onmouseout="return searchBox.OnSearchSelectHide()"
  68. alt=""/>
  69. <input type="text" id="MSearchField" value="Search" accesskey="S"
  70. onfocus="searchBox.OnSearchFieldFocus(true)"
  71. onblur="searchBox.OnSearchFieldFocus(false)"
  72. onkeyup="searchBox.OnSearchFieldChange(event)"/>
  73. </span><span class="right">
  74. <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
  75. </span>
  76. </div>
  77. </li>
  78. </ul>
  79. </div>
  80. </div><!-- top -->
  81. <div id="side-nav" class="ui-resizable side-nav-resizable">
  82. <div id="nav-tree">
  83. <div id="nav-tree-contents">
  84. <div id="nav-sync" class="sync"></div>
  85. </div>
  86. </div>
  87. <div id="splitbar" style="-moz-user-select:none;"
  88. class="ui-resizable-handle">
  89. </div>
  90. </div>
  91. <script type="text/javascript">
  92. $(document).ready(function(){initNavTree('group__CFFT__CIFFT.html','');});
  93. </script>
  94. <div id="doc-content">
  95. <!-- window showing the filter options -->
  96. <div id="MSearchSelectWindow"
  97. onmouseover="return searchBox.OnSearchSelectShow()"
  98. onmouseout="return searchBox.OnSearchSelectHide()"
  99. onkeydown="return searchBox.OnSearchSelectKey(event)">
  100. <a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Data Structures</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark">&#160;</span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark">&#160;</span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(9)"><span class="SelectionMark">&#160;</span>Macros</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(10)"><span class="SelectionMark">&#160;</span>Groups</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(11)"><span class="SelectionMark">&#160;</span>Pages</a></div>
  101. <!-- iframe showing the search results (closed by default) -->
  102. <div id="MSearchResultsWindow">
  103. <iframe src="javascript:void(0)" frameborder="0"
  104. name="MSearchResults" id="MSearchResults">
  105. </iframe>
  106. </div>
  107. <div class="header">
  108. <div class="summary">
  109. <a href="#var-members">Variables</a> </div>
  110. <div class="headertitle">
  111. <div class="title">Complex FFT Tables<div class="ingroups"><a class="el" href="group__ComplexFFT.html">Complex FFT Functions</a></div></div> </div>
  112. </div><!--header-->
  113. <div class="contents">
  114. <table class="memberdecls">
  115. <tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="var-members"></a>
  116. Variables</h2></td></tr>
  117. <tr class="memitem:gae247e83ad50d474107254e25b36ad42b"><td class="memItemLeft" align="right" valign="top">const uint16_t&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gae247e83ad50d474107254e25b36ad42b">armBitRevTable</a> [1024]</td></tr>
  118. <tr class="memdesc:gae247e83ad50d474107254e25b36ad42b"><td class="mdescLeft">&#160;</td><td class="mdescRight">Table for bit reversal process. <a href="#gae247e83ad50d474107254e25b36ad42b">More...</a><br/></td></tr>
  119. <tr class="separator:gae247e83ad50d474107254e25b36ad42b"><td class="memSeparator" colspan="2">&#160;</td></tr>
  120. <tr class="memitem:gabeb418730eacdce077316477b7f1e960"><td class="memItemLeft" align="right" valign="top">const uint64_t&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gabeb418730eacdce077316477b7f1e960">twiddleCoefF64_16</a> [32]</td></tr>
  121. <tr class="memdesc:gabeb418730eacdce077316477b7f1e960"><td class="mdescLeft">&#160;</td><td class="mdescRight">Double Precision Floating-point Twiddle factors Table Generation. <a href="#gabeb418730eacdce077316477b7f1e960">More...</a><br/></td></tr>
  122. <tr class="separator:gabeb418730eacdce077316477b7f1e960"><td class="memSeparator" colspan="2">&#160;</td></tr>
  123. <tr class="memitem:ga3f7d1eaff3c6910ee7d85ae1c9015fe5"><td class="memItemLeft" align="right" valign="top">const uint64_t&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga3f7d1eaff3c6910ee7d85ae1c9015fe5">twiddleCoefF64_32</a> [64]</td></tr>
  124. <tr class="separator:ga3f7d1eaff3c6910ee7d85ae1c9015fe5"><td class="memSeparator" colspan="2">&#160;</td></tr>
  125. <tr class="memitem:ga6fe9e2b9200445a2313d7542c586639b"><td class="memItemLeft" align="right" valign="top">const uint64_t&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga6fe9e2b9200445a2313d7542c586639b">twiddleCoefF64_64</a> [128]</td></tr>
  126. <tr class="separator:ga6fe9e2b9200445a2313d7542c586639b"><td class="memSeparator" colspan="2">&#160;</td></tr>
  127. <tr class="memitem:ga252036ff16d9125ae72f547f4565f36f"><td class="memItemLeft" align="right" valign="top">const uint64_t&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga252036ff16d9125ae72f547f4565f36f">twiddleCoefF64_128</a> [256]</td></tr>
  128. <tr class="separator:ga252036ff16d9125ae72f547f4565f36f"><td class="memSeparator" colspan="2">&#160;</td></tr>
  129. <tr class="memitem:ga10e83806d2c02cc4f5f07ce46851a673"><td class="memItemLeft" align="right" valign="top">const uint64_t&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga10e83806d2c02cc4f5f07ce46851a673">twiddleCoefF64_256</a> [512]</td></tr>
  130. <tr class="separator:ga10e83806d2c02cc4f5f07ce46851a673"><td class="memSeparator" colspan="2">&#160;</td></tr>
  131. <tr class="memitem:gadf57a6c3f49246e356cc72615c5dc8ba"><td class="memItemLeft" align="right" valign="top">const uint64_t&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gadf57a6c3f49246e356cc72615c5dc8ba">twiddleCoefF64_512</a> [1024]</td></tr>
  132. <tr class="separator:gadf57a6c3f49246e356cc72615c5dc8ba"><td class="memSeparator" colspan="2">&#160;</td></tr>
  133. <tr class="memitem:ga6626143034266d76fafe4195cd59e9ef"><td class="memItemLeft" align="right" valign="top">const uint64_t&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga6626143034266d76fafe4195cd59e9ef">twiddleCoefF64_1024</a> [2048]</td></tr>
  134. <tr class="separator:ga6626143034266d76fafe4195cd59e9ef"><td class="memSeparator" colspan="2">&#160;</td></tr>
  135. <tr class="memitem:ga0d6a794c1315cceaa884e3bdc736e576"><td class="memItemLeft" align="right" valign="top">const uint64_t&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga0d6a794c1315cceaa884e3bdc736e576">twiddleCoefF64_2048</a> [4096]</td></tr>
  136. <tr class="separator:ga0d6a794c1315cceaa884e3bdc736e576"><td class="memSeparator" colspan="2">&#160;</td></tr>
  137. <tr class="memitem:gac0f43575fce0ab5e30d8731924dbc6d3"><td class="memItemLeft" align="right" valign="top">const uint64_t&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gac0f43575fce0ab5e30d8731924dbc6d3">twiddleCoefF64_4096</a> [8192]</td></tr>
  138. <tr class="separator:gac0f43575fce0ab5e30d8731924dbc6d3"><td class="memSeparator" colspan="2">&#160;</td></tr>
  139. <tr class="memitem:gae75e243ec61706427314270f222e0c8e"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gae75e243ec61706427314270f222e0c8e">twiddleCoef_16</a> [32]</td></tr>
  140. <tr class="memdesc:gae75e243ec61706427314270f222e0c8e"><td class="mdescLeft">&#160;</td><td class="mdescRight">Floating-point Twiddle factors Table Generation. <a href="#gae75e243ec61706427314270f222e0c8e">More...</a><br/></td></tr>
  141. <tr class="separator:gae75e243ec61706427314270f222e0c8e"><td class="memSeparator" colspan="2">&#160;</td></tr>
  142. <tr class="memitem:ga78a72c85d88185de98050c930cfc76e3"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga78a72c85d88185de98050c930cfc76e3">twiddleCoef_32</a> [64]</td></tr>
  143. <tr class="separator:ga78a72c85d88185de98050c930cfc76e3"><td class="memSeparator" colspan="2">&#160;</td></tr>
  144. <tr class="memitem:ga4f3c6d98c7e66393b4ef3ac63746e43d"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga4f3c6d98c7e66393b4ef3ac63746e43d">twiddleCoef_64</a> [128]</td></tr>
  145. <tr class="separator:ga4f3c6d98c7e66393b4ef3ac63746e43d"><td class="memSeparator" colspan="2">&#160;</td></tr>
  146. <tr class="memitem:ga948433536dafaac1381decfccf4e2d9c"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga948433536dafaac1381decfccf4e2d9c">twiddleCoef_128</a> [256]</td></tr>
  147. <tr class="separator:ga948433536dafaac1381decfccf4e2d9c"><td class="memSeparator" colspan="2">&#160;</td></tr>
  148. <tr class="memitem:gafe813758a03a798e972359a092315be4"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gafe813758a03a798e972359a092315be4">twiddleCoef_256</a> [512]</td></tr>
  149. <tr class="separator:gafe813758a03a798e972359a092315be4"><td class="memSeparator" colspan="2">&#160;</td></tr>
  150. <tr class="memitem:gad8830f0c068ab2cc19f2f87d220fa148"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gad8830f0c068ab2cc19f2f87d220fa148">twiddleCoef_512</a> [1024]</td></tr>
  151. <tr class="separator:gad8830f0c068ab2cc19f2f87d220fa148"><td class="memSeparator" colspan="2">&#160;</td></tr>
  152. <tr class="memitem:ga27c056eb130a4333d1cc5dd43ec738b1"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga27c056eb130a4333d1cc5dd43ec738b1">twiddleCoef_1024</a> [2048]</td></tr>
  153. <tr class="separator:ga27c056eb130a4333d1cc5dd43ec738b1"><td class="memSeparator" colspan="2">&#160;</td></tr>
  154. <tr class="memitem:ga23e7f30421a7905b21c2015429779633"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga23e7f30421a7905b21c2015429779633">twiddleCoef_2048</a> [4096]</td></tr>
  155. <tr class="separator:ga23e7f30421a7905b21c2015429779633"><td class="memSeparator" colspan="2">&#160;</td></tr>
  156. <tr class="memitem:gae0182d1dd3b2f21aad4e38a815a0bd40"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gae0182d1dd3b2f21aad4e38a815a0bd40">twiddleCoef_4096</a> [8192]</td></tr>
  157. <tr class="separator:gae0182d1dd3b2f21aad4e38a815a0bd40"><td class="memSeparator" colspan="2">&#160;</td></tr>
  158. <tr class="memitem:gaef4697e1ba348c4ac9358f2b9e279e93"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gaef4697e1ba348c4ac9358f2b9e279e93">twiddleCoef_16_q31</a> [24]</td></tr>
  159. <tr class="memdesc:gaef4697e1ba348c4ac9358f2b9e279e93"><td class="mdescLeft">&#160;</td><td class="mdescRight">Q31 Twiddle factors Table. <a href="#gaef4697e1ba348c4ac9358f2b9e279e93">More...</a><br/></td></tr>
  160. <tr class="separator:gaef4697e1ba348c4ac9358f2b9e279e93"><td class="memSeparator" colspan="2">&#160;</td></tr>
  161. <tr class="memitem:ga8ba78d5e6ef4bdc58e8f0044e0664a0a"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga8ba78d5e6ef4bdc58e8f0044e0664a0a">twiddleCoef_32_q31</a> [48]</td></tr>
  162. <tr class="separator:ga8ba78d5e6ef4bdc58e8f0044e0664a0a"><td class="memSeparator" colspan="2">&#160;</td></tr>
  163. <tr class="memitem:ga6e0a7e941a25a0d74b2e6590307de47e"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga6e0a7e941a25a0d74b2e6590307de47e">twiddleCoef_64_q31</a> [96]</td></tr>
  164. <tr class="separator:ga6e0a7e941a25a0d74b2e6590307de47e"><td class="memSeparator" colspan="2">&#160;</td></tr>
  165. <tr class="memitem:gafecf9ed9873415d9f5f17f37b30c7250"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gafecf9ed9873415d9f5f17f37b30c7250">twiddleCoef_128_q31</a> [192]</td></tr>
  166. <tr class="separator:gafecf9ed9873415d9f5f17f37b30c7250"><td class="memSeparator" colspan="2">&#160;</td></tr>
  167. <tr class="memitem:gaef1ea005053b715b851cf5f908168ede"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gaef1ea005053b715b851cf5f908168ede">twiddleCoef_256_q31</a> [384]</td></tr>
  168. <tr class="separator:gaef1ea005053b715b851cf5f908168ede"><td class="memSeparator" colspan="2">&#160;</td></tr>
  169. <tr class="memitem:ga416c61b2f08542a39111e06b0378bebe"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga416c61b2f08542a39111e06b0378bebe">twiddleCoef_512_q31</a> [768]</td></tr>
  170. <tr class="separator:ga416c61b2f08542a39111e06b0378bebe"><td class="memSeparator" colspan="2">&#160;</td></tr>
  171. <tr class="memitem:ga514443c44b62b8b3d240afefebcda310"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga514443c44b62b8b3d240afefebcda310">twiddleCoef_1024_q31</a> [1536]</td></tr>
  172. <tr class="separator:ga514443c44b62b8b3d240afefebcda310"><td class="memSeparator" colspan="2">&#160;</td></tr>
  173. <tr class="memitem:ga9c5767de9f5a409fd0c2027e6ac67179"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga9c5767de9f5a409fd0c2027e6ac67179">twiddleCoef_2048_q31</a> [3072]</td></tr>
  174. <tr class="separator:ga9c5767de9f5a409fd0c2027e6ac67179"><td class="memSeparator" colspan="2">&#160;</td></tr>
  175. <tr class="memitem:ga67c0890317deab3391e276f22c1fc400"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga67c0890317deab3391e276f22c1fc400">twiddleCoef_4096_q31</a> [6144]</td></tr>
  176. <tr class="separator:ga67c0890317deab3391e276f22c1fc400"><td class="memSeparator" colspan="2">&#160;</td></tr>
  177. <tr class="memitem:ga8e4e2e05f4a3112184c96cb3308d6c39"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga8e4e2e05f4a3112184c96cb3308d6c39">twiddleCoef_16_q15</a> [24]</td></tr>
  178. <tr class="memdesc:ga8e4e2e05f4a3112184c96cb3308d6c39"><td class="mdescLeft">&#160;</td><td class="mdescRight">q15 Twiddle factors Table <a href="#ga8e4e2e05f4a3112184c96cb3308d6c39">More...</a><br/></td></tr>
  179. <tr class="separator:ga8e4e2e05f4a3112184c96cb3308d6c39"><td class="memSeparator" colspan="2">&#160;</td></tr>
  180. <tr class="memitem:gac194a4fe04a19051ae1811f69c6e5df2"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gac194a4fe04a19051ae1811f69c6e5df2">twiddleCoef_32_q15</a> [48]</td></tr>
  181. <tr class="separator:gac194a4fe04a19051ae1811f69c6e5df2"><td class="memSeparator" colspan="2">&#160;</td></tr>
  182. <tr class="memitem:gaa0cc411e0b3c82078e85cfdf1b84290f"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gaa0cc411e0b3c82078e85cfdf1b84290f">twiddleCoef_64_q15</a> [96]</td></tr>
  183. <tr class="separator:gaa0cc411e0b3c82078e85cfdf1b84290f"><td class="memSeparator" colspan="2">&#160;</td></tr>
  184. <tr class="memitem:gabfdd1c5cd2b3f96da5fe5f07c707a8e5"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gabfdd1c5cd2b3f96da5fe5f07c707a8e5">twiddleCoef_128_q15</a> [192]</td></tr>
  185. <tr class="separator:gabfdd1c5cd2b3f96da5fe5f07c707a8e5"><td class="memSeparator" colspan="2">&#160;</td></tr>
  186. <tr class="memitem:ga6099ae5262a0a3a8d9ce1e6da02f0c2e"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga6099ae5262a0a3a8d9ce1e6da02f0c2e">twiddleCoef_256_q15</a> [384]</td></tr>
  187. <tr class="separator:ga6099ae5262a0a3a8d9ce1e6da02f0c2e"><td class="memSeparator" colspan="2">&#160;</td></tr>
  188. <tr class="memitem:ga6152621af210f847128c6f38958fa385"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga6152621af210f847128c6f38958fa385">twiddleCoef_512_q15</a> [768]</td></tr>
  189. <tr class="separator:ga6152621af210f847128c6f38958fa385"><td class="memSeparator" colspan="2">&#160;</td></tr>
  190. <tr class="memitem:ga8a0ec95d866fe96b740e77d6e1356b59"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga8a0ec95d866fe96b740e77d6e1356b59">twiddleCoef_1024_q15</a> [1536]</td></tr>
  191. <tr class="separator:ga8a0ec95d866fe96b740e77d6e1356b59"><td class="memSeparator" colspan="2">&#160;</td></tr>
  192. <tr class="memitem:gadd16ce08ffd1048c385e0534a3b19cbb"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gadd16ce08ffd1048c385e0534a3b19cbb">twiddleCoef_2048_q15</a> [3072]</td></tr>
  193. <tr class="separator:gadd16ce08ffd1048c385e0534a3b19cbb"><td class="memSeparator" colspan="2">&#160;</td></tr>
  194. <tr class="memitem:ga9b409d6995eab17805b1d1881d4bc652"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga9b409d6995eab17805b1d1881d4bc652">twiddleCoef_4096_q15</a> [6144]</td></tr>
  195. <tr class="separator:ga9b409d6995eab17805b1d1881d4bc652"><td class="memSeparator" colspan="2">&#160;</td></tr>
  196. </table>
  197. <a name="details" id="details"></a><h2 class="groupheader">Description</h2>
  198. <h2 class="groupheader">Variable Documentation</h2>
  199. <a class="anchor" id="gae247e83ad50d474107254e25b36ad42b"></a>
  200. <div class="memitem">
  201. <div class="memproto">
  202. <table class="memname">
  203. <tr>
  204. <td class="memname">const uint16_t armBitRevTable[1024]</td>
  205. </tr>
  206. </table>
  207. </div><div class="memdoc">
  208. <dl class="section user"><dt></dt><dd>Pseudo code for Generation of Bit reversal Table is </dd></dl>
  209. <dl class="section user"><dt></dt><dd><pre>for (l = 1; l &lt;= N/4; l++)
  210. {
  211. for (i = 0; i&lt; logN2; i++)
  212. {
  213. a[i] = l &amp; (1 &lt;&lt; i);
  214. }
  215. for (j = 0; j &lt; logN2; j++)
  216. {
  217. if (a[j] != 0)
  218. y[l] += (1 &lt;&lt; ((logN2 - 1) - j));
  219. }
  220. y[l] = y[l] &gt;&gt; 1;
  221. } </pre> </dd></dl>
  222. <dl class="section user"><dt></dt><dd>where N = 4096, logN2 = 12 </dd></dl>
  223. <dl class="section user"><dt></dt><dd>N is the maximum FFT Size supported </dd></dl>
  224. </div>
  225. </div>
  226. <a class="anchor" id="ga27c056eb130a4333d1cc5dd43ec738b1"></a>
  227. <div class="memitem">
  228. <div class="memproto">
  229. <table class="memname">
  230. <tr>
  231. <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_1024[2048]</td>
  232. </tr>
  233. </table>
  234. </div><div class="memdoc">
  235. <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
  236. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  237. {
  238. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  239. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  240. } </pre> </dd></dl>
  241. <dl class="section user"><dt></dt><dd>where N = 1024, PI = 3.14159265358979 </dd></dl>
  242. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  243. </div>
  244. </div>
  245. <a class="anchor" id="ga8a0ec95d866fe96b740e77d6e1356b59"></a>
  246. <div class="memitem">
  247. <div class="memproto">
  248. <table class="memname">
  249. <tr>
  250. <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_1024_q15[1536]</td>
  251. </tr>
  252. </table>
  253. </div><div class="memdoc">
  254. <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
  255. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  256. {
  257. twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
  258. twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
  259. } </pre> </dd></dl>
  260. <dl class="section user"><dt></dt><dd>where N = 1024, PI = 3.14159265358979 </dd></dl>
  261. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  262. <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
  263. </div>
  264. </div>
  265. <a class="anchor" id="ga514443c44b62b8b3d240afefebcda310"></a>
  266. <div class="memitem">
  267. <div class="memproto">
  268. <table class="memname">
  269. <tr>
  270. <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_1024_q31[1536]</td>
  271. </tr>
  272. </table>
  273. </div><div class="memdoc">
  274. <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
  275. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  276. {
  277. twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
  278. twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
  279. } </pre> </dd></dl>
  280. <dl class="section user"><dt></dt><dd>where N = 1024, PI = 3.14159265358979 </dd></dl>
  281. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  282. <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
  283. </div>
  284. </div>
  285. <a class="anchor" id="ga948433536dafaac1381decfccf4e2d9c"></a>
  286. <div class="memitem">
  287. <div class="memproto">
  288. <table class="memname">
  289. <tr>
  290. <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_128[256]</td>
  291. </tr>
  292. </table>
  293. </div><div class="memdoc">
  294. <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
  295. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  296. {
  297. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  298. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  299. } </pre> </dd></dl>
  300. <dl class="section user"><dt></dt><dd>where N = 128, PI = 3.14159265358979 </dd></dl>
  301. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  302. </div>
  303. </div>
  304. <a class="anchor" id="gabfdd1c5cd2b3f96da5fe5f07c707a8e5"></a>
  305. <div class="memitem">
  306. <div class="memproto">
  307. <table class="memname">
  308. <tr>
  309. <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_128_q15[192]</td>
  310. </tr>
  311. </table>
  312. </div><div class="memdoc">
  313. <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
  314. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  315. {
  316. twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
  317. twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
  318. } </pre> </dd></dl>
  319. <dl class="section user"><dt></dt><dd>where N = 128, PI = 3.14159265358979 </dd></dl>
  320. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  321. <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
  322. </div>
  323. </div>
  324. <a class="anchor" id="gafecf9ed9873415d9f5f17f37b30c7250"></a>
  325. <div class="memitem">
  326. <div class="memproto">
  327. <table class="memname">
  328. <tr>
  329. <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_128_q31[192]</td>
  330. </tr>
  331. </table>
  332. </div><div class="memdoc">
  333. <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
  334. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i &lt; 3N/4; i++)
  335. {
  336. twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
  337. twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
  338. } </pre> </dd></dl>
  339. <dl class="section user"><dt></dt><dd>where N = 128, PI = 3.14159265358979 </dd></dl>
  340. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  341. <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
  342. </div>
  343. </div>
  344. <a class="anchor" id="gae75e243ec61706427314270f222e0c8e"></a>
  345. <div class="memitem">
  346. <div class="memproto">
  347. <table class="memname">
  348. <tr>
  349. <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_16[32]</td>
  350. </tr>
  351. </table>
  352. </div><div class="memdoc">
  353. <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
  354. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i &lt; N/; i++)
  355. {
  356. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  357. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  358. } </pre> </dd></dl>
  359. <dl class="section user"><dt></dt><dd>where N = 16, PI = 3.14159265358979 </dd></dl>
  360. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  361. </div>
  362. </div>
  363. <a class="anchor" id="ga8e4e2e05f4a3112184c96cb3308d6c39"></a>
  364. <div class="memitem">
  365. <div class="memproto">
  366. <table class="memname">
  367. <tr>
  368. <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_16_q15[24]</td>
  369. </tr>
  370. </table>
  371. </div><div class="memdoc">
  372. <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
  373. <dl class="section user"><dt></dt><dd><pre>fori = 0; i&lt; 3N/4; i++)
  374. {
  375. twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
  376. twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
  377. } </pre> </dd></dl>
  378. <dl class="section user"><dt></dt><dd>where N = 16, PI = 3.14159265358979 </dd></dl>
  379. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  380. <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
  381. </div>
  382. </div>
  383. <a class="anchor" id="gaef4697e1ba348c4ac9358f2b9e279e93"></a>
  384. <div class="memitem">
  385. <div class="memproto">
  386. <table class="memname">
  387. <tr>
  388. <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_16_q31[24]</td>
  389. </tr>
  390. </table>
  391. </div><div class="memdoc">
  392. <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
  393. <dl class="section user"><dt></dt><dd><pre> for(i = 0; i&lt; 3N/4; i++)
  394. {
  395. twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
  396. twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
  397. } </pre> </dd></dl>
  398. <dl class="section user"><dt></dt><dd>where N = 16, PI = 3.14159265358979 </dd></dl>
  399. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  400. <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
  401. </div>
  402. </div>
  403. <a class="anchor" id="ga23e7f30421a7905b21c2015429779633"></a>
  404. <div class="memitem">
  405. <div class="memproto">
  406. <table class="memname">
  407. <tr>
  408. <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_2048[4096]</td>
  409. </tr>
  410. </table>
  411. </div><div class="memdoc">
  412. <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
  413. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  414. {
  415. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  416. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  417. } </pre> </dd></dl>
  418. <dl class="section user"><dt></dt><dd>where N = 2048, PI = 3.14159265358979 </dd></dl>
  419. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  420. </div>
  421. </div>
  422. <a class="anchor" id="gadd16ce08ffd1048c385e0534a3b19cbb"></a>
  423. <div class="memitem">
  424. <div class="memproto">
  425. <table class="memname">
  426. <tr>
  427. <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_2048_q15[3072]</td>
  428. </tr>
  429. </table>
  430. </div><div class="memdoc">
  431. <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
  432. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  433. {
  434. twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
  435. twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
  436. } </pre> </dd></dl>
  437. <dl class="section user"><dt></dt><dd>where N = 2048, PI = 3.14159265358979 </dd></dl>
  438. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  439. <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
  440. </div>
  441. </div>
  442. <a class="anchor" id="ga9c5767de9f5a409fd0c2027e6ac67179"></a>
  443. <div class="memitem">
  444. <div class="memproto">
  445. <table class="memname">
  446. <tr>
  447. <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_2048_q31[3072]</td>
  448. </tr>
  449. </table>
  450. </div><div class="memdoc">
  451. <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
  452. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  453. {
  454. twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
  455. twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
  456. } </pre> </dd></dl>
  457. <dl class="section user"><dt></dt><dd>where N = 2048, PI = 3.14159265358979 </dd></dl>
  458. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  459. <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
  460. </div>
  461. </div>
  462. <a class="anchor" id="gafe813758a03a798e972359a092315be4"></a>
  463. <div class="memitem">
  464. <div class="memproto">
  465. <table class="memname">
  466. <tr>
  467. <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_256[512]</td>
  468. </tr>
  469. </table>
  470. </div><div class="memdoc">
  471. <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
  472. <dl class="section user"><dt></dt><dd><pre>for(i = 0; i&lt; N/; i++)
  473. {
  474. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  475. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  476. } </pre> </dd></dl>
  477. <dl class="section user"><dt></dt><dd>where N = 256, PI = 3.14159265358979 </dd></dl>
  478. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  479. </div>
  480. </div>
  481. <a class="anchor" id="ga6099ae5262a0a3a8d9ce1e6da02f0c2e"></a>
  482. <div class="memitem">
  483. <div class="memproto">
  484. <table class="memname">
  485. <tr>
  486. <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_256_q15[384]</td>
  487. </tr>
  488. </table>
  489. </div><div class="memdoc">
  490. <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
  491. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  492. {
  493. twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
  494. twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
  495. } </pre> </dd></dl>
  496. <dl class="section user"><dt></dt><dd>where N = 256, PI = 3.14159265358979 </dd></dl>
  497. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  498. <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
  499. </div>
  500. </div>
  501. <a class="anchor" id="gaef1ea005053b715b851cf5f908168ede"></a>
  502. <div class="memitem">
  503. <div class="memproto">
  504. <table class="memname">
  505. <tr>
  506. <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_256_q31[384]</td>
  507. </tr>
  508. </table>
  509. </div><div class="memdoc">
  510. <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
  511. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  512. {
  513. twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
  514. twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
  515. } </pre> </dd></dl>
  516. <dl class="section user"><dt></dt><dd>where N = 256, PI = 3.14159265358979 </dd></dl>
  517. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  518. <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
  519. </div>
  520. </div>
  521. <a class="anchor" id="ga78a72c85d88185de98050c930cfc76e3"></a>
  522. <div class="memitem">
  523. <div class="memproto">
  524. <table class="memname">
  525. <tr>
  526. <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_32[64]</td>
  527. </tr>
  528. </table>
  529. </div><div class="memdoc">
  530. <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
  531. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  532. {
  533. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  534. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  535. } </pre> </dd></dl>
  536. <dl class="section user"><dt></dt><dd>where N = 32, PI = 3.14159265358979 </dd></dl>
  537. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  538. </div>
  539. </div>
  540. <a class="anchor" id="gac194a4fe04a19051ae1811f69c6e5df2"></a>
  541. <div class="memitem">
  542. <div class="memproto">
  543. <table class="memname">
  544. <tr>
  545. <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_32_q15[48]</td>
  546. </tr>
  547. </table>
  548. </div><div class="memdoc">
  549. <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
  550. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  551. {
  552. twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
  553. twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
  554. } </pre> </dd></dl>
  555. <dl class="section user"><dt></dt><dd>where N = 32, PI = 3.14159265358979 </dd></dl>
  556. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  557. <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
  558. </div>
  559. </div>
  560. <a class="anchor" id="ga8ba78d5e6ef4bdc58e8f0044e0664a0a"></a>
  561. <div class="memitem">
  562. <div class="memproto">
  563. <table class="memname">
  564. <tr>
  565. <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_32_q31[48]</td>
  566. </tr>
  567. </table>
  568. </div><div class="memdoc">
  569. <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
  570. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  571. {
  572. twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
  573. twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
  574. } </pre> </dd></dl>
  575. <dl class="section user"><dt></dt><dd>where N = 32, PI = 3.14159265358979 </dd></dl>
  576. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  577. <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
  578. </div>
  579. </div>
  580. <a class="anchor" id="gae0182d1dd3b2f21aad4e38a815a0bd40"></a>
  581. <div class="memitem">
  582. <div class="memproto">
  583. <table class="memname">
  584. <tr>
  585. <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_4096[8192]</td>
  586. </tr>
  587. </table>
  588. </div><div class="memdoc">
  589. <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
  590. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  591. {
  592. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  593. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  594. } </pre> </dd></dl>
  595. <dl class="section user"><dt></dt><dd>where N = 4096, PI = 3.14159265358979 </dd></dl>
  596. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  597. </div>
  598. </div>
  599. <a class="anchor" id="ga9b409d6995eab17805b1d1881d4bc652"></a>
  600. <div class="memitem">
  601. <div class="memproto">
  602. <table class="memname">
  603. <tr>
  604. <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_4096_q15[6144]</td>
  605. </tr>
  606. </table>
  607. </div><div class="memdoc">
  608. <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
  609. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  610. {
  611. twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
  612. twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
  613. } </pre> </dd></dl>
  614. <dl class="section user"><dt></dt><dd>where N = 4096, PI = 3.14159265358979 </dd></dl>
  615. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  616. <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
  617. </div>
  618. </div>
  619. <a class="anchor" id="ga67c0890317deab3391e276f22c1fc400"></a>
  620. <div class="memitem">
  621. <div class="memproto">
  622. <table class="memname">
  623. <tr>
  624. <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_4096_q31[6144]</td>
  625. </tr>
  626. </table>
  627. </div><div class="memdoc">
  628. <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
  629. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  630. {
  631. twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
  632. twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
  633. } </pre> </dd></dl>
  634. <dl class="section user"><dt></dt><dd>where N = 4096, PI = 3.14159265358979 </dd></dl>
  635. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  636. <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
  637. </div>
  638. </div>
  639. <a class="anchor" id="gad8830f0c068ab2cc19f2f87d220fa148"></a>
  640. <div class="memitem">
  641. <div class="memproto">
  642. <table class="memname">
  643. <tr>
  644. <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_512[1024]</td>
  645. </tr>
  646. </table>
  647. </div><div class="memdoc">
  648. <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
  649. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  650. {
  651. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  652. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  653. } </pre> </dd></dl>
  654. <dl class="section user"><dt></dt><dd>where N = 512, PI = 3.14159265358979 </dd></dl>
  655. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  656. </div>
  657. </div>
  658. <a class="anchor" id="ga6152621af210f847128c6f38958fa385"></a>
  659. <div class="memitem">
  660. <div class="memproto">
  661. <table class="memname">
  662. <tr>
  663. <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_512_q15[768]</td>
  664. </tr>
  665. </table>
  666. </div><div class="memdoc">
  667. <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
  668. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  669. {
  670. twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
  671. twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
  672. } </pre> </dd></dl>
  673. <dl class="section user"><dt></dt><dd>where N = 512, PI = 3.14159265358979 </dd></dl>
  674. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  675. <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
  676. </div>
  677. </div>
  678. <a class="anchor" id="ga416c61b2f08542a39111e06b0378bebe"></a>
  679. <div class="memitem">
  680. <div class="memproto">
  681. <table class="memname">
  682. <tr>
  683. <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_512_q31[768]</td>
  684. </tr>
  685. </table>
  686. </div><div class="memdoc">
  687. <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
  688. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  689. {
  690. twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
  691. twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
  692. } </pre> </dd></dl>
  693. <dl class="section user"><dt></dt><dd>where N = 512, PI = 3.14159265358979 </dd></dl>
  694. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  695. <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
  696. </div>
  697. </div>
  698. <a class="anchor" id="ga4f3c6d98c7e66393b4ef3ac63746e43d"></a>
  699. <div class="memitem">
  700. <div class="memproto">
  701. <table class="memname">
  702. <tr>
  703. <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_64[128]</td>
  704. </tr>
  705. </table>
  706. </div><div class="memdoc">
  707. <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
  708. <dl class="section user"><dt></dt><dd><pre>for(i = 0; i &lt; N/; i++)
  709. {
  710. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  711. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  712. } </pre> </dd></dl>
  713. <dl class="section user"><dt></dt><dd>where N = 64, PI = 3.14159265358979 </dd></dl>
  714. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  715. </div>
  716. </div>
  717. <a class="anchor" id="gaa0cc411e0b3c82078e85cfdf1b84290f"></a>
  718. <div class="memitem">
  719. <div class="memproto">
  720. <table class="memname">
  721. <tr>
  722. <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_64_q15[96]</td>
  723. </tr>
  724. </table>
  725. </div><div class="memdoc">
  726. <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
  727. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  728. {
  729. twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
  730. twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
  731. } </pre> </dd></dl>
  732. <dl class="section user"><dt></dt><dd>where N = 64, PI = 3.14159265358979 </dd></dl>
  733. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  734. <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
  735. </div>
  736. </div>
  737. <a class="anchor" id="ga6e0a7e941a25a0d74b2e6590307de47e"></a>
  738. <div class="memitem">
  739. <div class="memproto">
  740. <table class="memname">
  741. <tr>
  742. <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_64_q31[96]</td>
  743. </tr>
  744. </table>
  745. </div><div class="memdoc">
  746. <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
  747. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; 3N/4; i++)
  748. {
  749. twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
  750. twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
  751. } </pre> </dd></dl>
  752. <dl class="section user"><dt></dt><dd>where N = 64, PI = 3.14159265358979 </dd></dl>
  753. <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
  754. <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
  755. </div>
  756. </div>
  757. <a class="anchor" id="ga6626143034266d76fafe4195cd59e9ef"></a>
  758. <div class="memitem">
  759. <div class="memproto">
  760. <table class="memname">
  761. <tr>
  762. <td class="memname">const uint64_t twiddleCoefF64_1024[2048]</td>
  763. </tr>
  764. </table>
  765. </div><div class="memdoc">
  766. <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
  767. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  768. {
  769. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  770. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  771. } </pre> </dd></dl>
  772. <dl class="section user"><dt></dt><dd>where N = 1024, PI = 3.14159265358979 </dd></dl>
  773. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  774. </div>
  775. </div>
  776. <a class="anchor" id="ga252036ff16d9125ae72f547f4565f36f"></a>
  777. <div class="memitem">
  778. <div class="memproto">
  779. <table class="memname">
  780. <tr>
  781. <td class="memname">const uint64_t twiddleCoefF64_128[256]</td>
  782. </tr>
  783. </table>
  784. </div><div class="memdoc">
  785. <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
  786. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  787. {
  788. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  789. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  790. } </pre> </dd></dl>
  791. <dl class="section user"><dt></dt><dd>where N = 128, PI = 3.14159265358979 </dd></dl>
  792. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  793. </div>
  794. </div>
  795. <a class="anchor" id="gabeb418730eacdce077316477b7f1e960"></a>
  796. <div class="memitem">
  797. <div class="memproto">
  798. <table class="memname">
  799. <tr>
  800. <td class="memname">const uint64_t twiddleCoefF64_16[32]</td>
  801. </tr>
  802. </table>
  803. </div><div class="memdoc">
  804. <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
  805. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i &lt; N/; i++)
  806. {
  807. twiddleCoef[2*i] = cos(i * 2*PI/(double)N);
  808. twiddleCoef[2*i+1] = sin(i * 2*PI/(double)N);
  809. } </pre> </dd></dl>
  810. <dl class="section user"><dt></dt><dd>where N = 16, PI = 3.14159265358979 </dd></dl>
  811. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  812. </div>
  813. </div>
  814. <a class="anchor" id="ga0d6a794c1315cceaa884e3bdc736e576"></a>
  815. <div class="memitem">
  816. <div class="memproto">
  817. <table class="memname">
  818. <tr>
  819. <td class="memname">const uint64_t twiddleCoefF64_2048[4096]</td>
  820. </tr>
  821. </table>
  822. </div><div class="memdoc">
  823. <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
  824. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  825. {
  826. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  827. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  828. } </pre> </dd></dl>
  829. <dl class="section user"><dt></dt><dd>where N = 2048, PI = 3.14159265358979 </dd></dl>
  830. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  831. </div>
  832. </div>
  833. <a class="anchor" id="ga10e83806d2c02cc4f5f07ce46851a673"></a>
  834. <div class="memitem">
  835. <div class="memproto">
  836. <table class="memname">
  837. <tr>
  838. <td class="memname">const uint64_t twiddleCoefF64_256[512]</td>
  839. </tr>
  840. </table>
  841. </div><div class="memdoc">
  842. <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
  843. <dl class="section user"><dt></dt><dd><pre>for(i = 0; i&lt; N/; i++)
  844. {
  845. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  846. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  847. } </pre> </dd></dl>
  848. <dl class="section user"><dt></dt><dd>where N = 256, PI = 3.14159265358979 </dd></dl>
  849. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  850. </div>
  851. </div>
  852. <a class="anchor" id="ga3f7d1eaff3c6910ee7d85ae1c9015fe5"></a>
  853. <div class="memitem">
  854. <div class="memproto">
  855. <table class="memname">
  856. <tr>
  857. <td class="memname">const uint64_t twiddleCoefF64_32[64]</td>
  858. </tr>
  859. </table>
  860. </div><div class="memdoc">
  861. <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
  862. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  863. {
  864. twiddleCoef[2*i] = cos(i * 2*PI/N);
  865. twiddleCoef[2*i+1] = sin(i * 2*PI/N);
  866. } </pre> </dd></dl>
  867. <dl class="section user"><dt></dt><dd>where N = 32, PI = 3.14159265358979 </dd></dl>
  868. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  869. </div>
  870. </div>
  871. <a class="anchor" id="gac0f43575fce0ab5e30d8731924dbc6d3"></a>
  872. <div class="memitem">
  873. <div class="memproto">
  874. <table class="memname">
  875. <tr>
  876. <td class="memname">const uint64_t twiddleCoefF64_4096[8192]</td>
  877. </tr>
  878. </table>
  879. </div><div class="memdoc">
  880. <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
  881. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  882. {
  883. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  884. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  885. } </pre> </dd></dl>
  886. <dl class="section user"><dt></dt><dd>where N = 4096, PI = 3.14159265358979 </dd></dl>
  887. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  888. </div>
  889. </div>
  890. <a class="anchor" id="gadf57a6c3f49246e356cc72615c5dc8ba"></a>
  891. <div class="memitem">
  892. <div class="memproto">
  893. <table class="memname">
  894. <tr>
  895. <td class="memname">const uint64_t twiddleCoefF64_512[1024]</td>
  896. </tr>
  897. </table>
  898. </div><div class="memdoc">
  899. <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
  900. <dl class="section user"><dt></dt><dd><pre>for (i = 0; i&lt; N/; i++)
  901. {
  902. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  903. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  904. } </pre> </dd></dl>
  905. <dl class="section user"><dt></dt><dd>where N = 512, PI = 3.14159265358979 </dd></dl>
  906. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  907. </div>
  908. </div>
  909. <a class="anchor" id="ga6fe9e2b9200445a2313d7542c586639b"></a>
  910. <div class="memitem">
  911. <div class="memproto">
  912. <table class="memname">
  913. <tr>
  914. <td class="memname">const uint64_t twiddleCoefF64_64[128]</td>
  915. </tr>
  916. </table>
  917. </div><div class="memdoc">
  918. <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
  919. <dl class="section user"><dt></dt><dd><pre>for(i = 0; i &lt; N/; i++)
  920. {
  921. twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
  922. twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
  923. } </pre> </dd></dl>
  924. <dl class="section user"><dt></dt><dd>where N = 64, PI = 3.14159265358979 </dd></dl>
  925. <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
  926. </div>
  927. </div>
  928. </div><!-- contents -->
  929. </div><!-- doc-content -->
  930. <!-- start footer part -->
  931. <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
  932. <ul>
  933. <li class="footer">Generated on Thu Apr 9 2020 15:49:23 for CMSIS-DSP Version 1.8.0 by Arm Ltd. All rights reserved.
  934. <!--
  935. <a href="http://www.doxygen.org/index.html">
  936. <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.6
  937. -->
  938. </li>
  939. </ul>
  940. </div>
  941. </body>
  942. </html>