| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981 |
- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
- <html xmlns="http://www.w3.org/1999/xhtml">
- <head>
- <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
- <meta http-equiv="X-UA-Compatible" content="IE=9"/>
- <title>Complex FFT Tables</title>
- <title>CMSIS-DSP: Complex FFT Tables</title>
- <link href="tabs.css" rel="stylesheet" type="text/css"/>
- <link href="cmsis.css" rel="stylesheet" type="text/css" />
- <script type="text/javascript" src="jquery.js"></script>
- <script type="text/javascript" src="dynsections.js"></script>
- <script type="text/javascript" src="printComponentTabs.js"></script>
- <link href="navtree.css" rel="stylesheet" type="text/css"/>
- <script type="text/javascript" src="resize.js"></script>
- <script type="text/javascript" src="navtree.js"></script>
- <script type="text/javascript">
- $(document).ready(initResizable);
- $(window).load(resizeHeight);
- </script>
- <link href="search/search.css" rel="stylesheet" type="text/css"/>
- <script type="text/javascript" src="search/search.js"></script>
- <script type="text/javascript">
- $(document).ready(function() { searchBox.OnSelectItem(0); });
- </script>
- </head>
- <body>
- <div id="top"><!-- do not remove this div, it is closed by doxygen! -->
- <div id="titlearea">
- <table cellspacing="0" cellpadding="0">
- <tbody>
- <tr style="height: 46px;">
- <td id="projectlogo"><img alt="Logo" src="CMSIS_Logo_Final.png"/></td>
- <td style="padding-left: 0.5em;">
- <div id="projectname">CMSIS-DSP
-  <span id="projectnumber">Version 1.8.0</span>
- </div>
- <div id="projectbrief">CMSIS DSP Software Library</div>
- </td>
- </tr>
- </tbody>
- </table>
- </div>
- <!-- end header part -->
- <div id="CMSISnav" class="tabs1">
- <ul class="tablist">
- <script type="text/javascript">
- <!--
- writeComponentTabs.call(this);
- //-->
- </script>
- </ul>
- </div>
- <!-- Generated by Doxygen 1.8.6 -->
- <script type="text/javascript">
- var searchBox = new SearchBox("searchBox", "search",false,'Search');
- </script>
- <div id="navrow1" class="tabs">
- <ul class="tablist">
- <li><a href="index.html"><span>Main Page</span></a></li>
- <li><a href="pages.html"><span>Usage and Description</span></a></li>
- <li><a href="modules.html"><span>Reference</span></a></li>
- <li>
- <div id="MSearchBox" class="MSearchBoxInactive">
- <span class="left">
- <img id="MSearchSelect" src="search/mag_sel.png"
- onmouseover="return searchBox.OnSearchSelectShow()"
- onmouseout="return searchBox.OnSearchSelectHide()"
- alt=""/>
- <input type="text" id="MSearchField" value="Search" accesskey="S"
- onfocus="searchBox.OnSearchFieldFocus(true)"
- onblur="searchBox.OnSearchFieldFocus(false)"
- onkeyup="searchBox.OnSearchFieldChange(event)"/>
- </span><span class="right">
- <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
- </span>
- </div>
- </li>
- </ul>
- </div>
- </div><!-- top -->
- <div id="side-nav" class="ui-resizable side-nav-resizable">
- <div id="nav-tree">
- <div id="nav-tree-contents">
- <div id="nav-sync" class="sync"></div>
- </div>
- </div>
- <div id="splitbar" style="-moz-user-select:none;"
- class="ui-resizable-handle">
- </div>
- </div>
- <script type="text/javascript">
- $(document).ready(function(){initNavTree('group__CFFT__CIFFT.html','');});
- </script>
- <div id="doc-content">
- <!-- window showing the filter options -->
- <div id="MSearchSelectWindow"
- onmouseover="return searchBox.OnSearchSelectShow()"
- onmouseout="return searchBox.OnSearchSelectHide()"
- onkeydown="return searchBox.OnSearchSelectKey(event)">
- <a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark"> </span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark"> </span>Data Structures</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark"> </span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark"> </span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark"> </span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark"> </span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark"> </span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark"> </span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark"> </span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(9)"><span class="SelectionMark"> </span>Macros</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(10)"><span class="SelectionMark"> </span>Groups</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(11)"><span class="SelectionMark"> </span>Pages</a></div>
- <!-- iframe showing the search results (closed by default) -->
- <div id="MSearchResultsWindow">
- <iframe src="javascript:void(0)" frameborder="0"
- name="MSearchResults" id="MSearchResults">
- </iframe>
- </div>
- <div class="header">
- <div class="summary">
- <a href="#var-members">Variables</a> </div>
- <div class="headertitle">
- <div class="title">Complex FFT Tables<div class="ingroups"><a class="el" href="group__ComplexFFT.html">Complex FFT Functions</a></div></div> </div>
- </div><!--header-->
- <div class="contents">
- <table class="memberdecls">
- <tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="var-members"></a>
- Variables</h2></td></tr>
- <tr class="memitem:gae247e83ad50d474107254e25b36ad42b"><td class="memItemLeft" align="right" valign="top">const uint16_t </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gae247e83ad50d474107254e25b36ad42b">armBitRevTable</a> [1024]</td></tr>
- <tr class="memdesc:gae247e83ad50d474107254e25b36ad42b"><td class="mdescLeft"> </td><td class="mdescRight">Table for bit reversal process. <a href="#gae247e83ad50d474107254e25b36ad42b">More...</a><br/></td></tr>
- <tr class="separator:gae247e83ad50d474107254e25b36ad42b"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gabeb418730eacdce077316477b7f1e960"><td class="memItemLeft" align="right" valign="top">const uint64_t </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gabeb418730eacdce077316477b7f1e960">twiddleCoefF64_16</a> [32]</td></tr>
- <tr class="memdesc:gabeb418730eacdce077316477b7f1e960"><td class="mdescLeft"> </td><td class="mdescRight">Double Precision Floating-point Twiddle factors Table Generation. <a href="#gabeb418730eacdce077316477b7f1e960">More...</a><br/></td></tr>
- <tr class="separator:gabeb418730eacdce077316477b7f1e960"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga3f7d1eaff3c6910ee7d85ae1c9015fe5"><td class="memItemLeft" align="right" valign="top">const uint64_t </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga3f7d1eaff3c6910ee7d85ae1c9015fe5">twiddleCoefF64_32</a> [64]</td></tr>
- <tr class="separator:ga3f7d1eaff3c6910ee7d85ae1c9015fe5"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga6fe9e2b9200445a2313d7542c586639b"><td class="memItemLeft" align="right" valign="top">const uint64_t </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga6fe9e2b9200445a2313d7542c586639b">twiddleCoefF64_64</a> [128]</td></tr>
- <tr class="separator:ga6fe9e2b9200445a2313d7542c586639b"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga252036ff16d9125ae72f547f4565f36f"><td class="memItemLeft" align="right" valign="top">const uint64_t </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga252036ff16d9125ae72f547f4565f36f">twiddleCoefF64_128</a> [256]</td></tr>
- <tr class="separator:ga252036ff16d9125ae72f547f4565f36f"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga10e83806d2c02cc4f5f07ce46851a673"><td class="memItemLeft" align="right" valign="top">const uint64_t </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga10e83806d2c02cc4f5f07ce46851a673">twiddleCoefF64_256</a> [512]</td></tr>
- <tr class="separator:ga10e83806d2c02cc4f5f07ce46851a673"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gadf57a6c3f49246e356cc72615c5dc8ba"><td class="memItemLeft" align="right" valign="top">const uint64_t </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gadf57a6c3f49246e356cc72615c5dc8ba">twiddleCoefF64_512</a> [1024]</td></tr>
- <tr class="separator:gadf57a6c3f49246e356cc72615c5dc8ba"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga6626143034266d76fafe4195cd59e9ef"><td class="memItemLeft" align="right" valign="top">const uint64_t </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga6626143034266d76fafe4195cd59e9ef">twiddleCoefF64_1024</a> [2048]</td></tr>
- <tr class="separator:ga6626143034266d76fafe4195cd59e9ef"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga0d6a794c1315cceaa884e3bdc736e576"><td class="memItemLeft" align="right" valign="top">const uint64_t </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga0d6a794c1315cceaa884e3bdc736e576">twiddleCoefF64_2048</a> [4096]</td></tr>
- <tr class="separator:ga0d6a794c1315cceaa884e3bdc736e576"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gac0f43575fce0ab5e30d8731924dbc6d3"><td class="memItemLeft" align="right" valign="top">const uint64_t </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gac0f43575fce0ab5e30d8731924dbc6d3">twiddleCoefF64_4096</a> [8192]</td></tr>
- <tr class="separator:gac0f43575fce0ab5e30d8731924dbc6d3"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gae75e243ec61706427314270f222e0c8e"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gae75e243ec61706427314270f222e0c8e">twiddleCoef_16</a> [32]</td></tr>
- <tr class="memdesc:gae75e243ec61706427314270f222e0c8e"><td class="mdescLeft"> </td><td class="mdescRight">Floating-point Twiddle factors Table Generation. <a href="#gae75e243ec61706427314270f222e0c8e">More...</a><br/></td></tr>
- <tr class="separator:gae75e243ec61706427314270f222e0c8e"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga78a72c85d88185de98050c930cfc76e3"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga78a72c85d88185de98050c930cfc76e3">twiddleCoef_32</a> [64]</td></tr>
- <tr class="separator:ga78a72c85d88185de98050c930cfc76e3"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga4f3c6d98c7e66393b4ef3ac63746e43d"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga4f3c6d98c7e66393b4ef3ac63746e43d">twiddleCoef_64</a> [128]</td></tr>
- <tr class="separator:ga4f3c6d98c7e66393b4ef3ac63746e43d"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga948433536dafaac1381decfccf4e2d9c"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga948433536dafaac1381decfccf4e2d9c">twiddleCoef_128</a> [256]</td></tr>
- <tr class="separator:ga948433536dafaac1381decfccf4e2d9c"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gafe813758a03a798e972359a092315be4"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gafe813758a03a798e972359a092315be4">twiddleCoef_256</a> [512]</td></tr>
- <tr class="separator:gafe813758a03a798e972359a092315be4"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gad8830f0c068ab2cc19f2f87d220fa148"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gad8830f0c068ab2cc19f2f87d220fa148">twiddleCoef_512</a> [1024]</td></tr>
- <tr class="separator:gad8830f0c068ab2cc19f2f87d220fa148"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga27c056eb130a4333d1cc5dd43ec738b1"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga27c056eb130a4333d1cc5dd43ec738b1">twiddleCoef_1024</a> [2048]</td></tr>
- <tr class="separator:ga27c056eb130a4333d1cc5dd43ec738b1"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga23e7f30421a7905b21c2015429779633"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga23e7f30421a7905b21c2015429779633">twiddleCoef_2048</a> [4096]</td></tr>
- <tr class="separator:ga23e7f30421a7905b21c2015429779633"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gae0182d1dd3b2f21aad4e38a815a0bd40"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gae0182d1dd3b2f21aad4e38a815a0bd40">twiddleCoef_4096</a> [8192]</td></tr>
- <tr class="separator:gae0182d1dd3b2f21aad4e38a815a0bd40"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gaef4697e1ba348c4ac9358f2b9e279e93"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gaef4697e1ba348c4ac9358f2b9e279e93">twiddleCoef_16_q31</a> [24]</td></tr>
- <tr class="memdesc:gaef4697e1ba348c4ac9358f2b9e279e93"><td class="mdescLeft"> </td><td class="mdescRight">Q31 Twiddle factors Table. <a href="#gaef4697e1ba348c4ac9358f2b9e279e93">More...</a><br/></td></tr>
- <tr class="separator:gaef4697e1ba348c4ac9358f2b9e279e93"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga8ba78d5e6ef4bdc58e8f0044e0664a0a"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga8ba78d5e6ef4bdc58e8f0044e0664a0a">twiddleCoef_32_q31</a> [48]</td></tr>
- <tr class="separator:ga8ba78d5e6ef4bdc58e8f0044e0664a0a"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga6e0a7e941a25a0d74b2e6590307de47e"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga6e0a7e941a25a0d74b2e6590307de47e">twiddleCoef_64_q31</a> [96]</td></tr>
- <tr class="separator:ga6e0a7e941a25a0d74b2e6590307de47e"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gafecf9ed9873415d9f5f17f37b30c7250"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gafecf9ed9873415d9f5f17f37b30c7250">twiddleCoef_128_q31</a> [192]</td></tr>
- <tr class="separator:gafecf9ed9873415d9f5f17f37b30c7250"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gaef1ea005053b715b851cf5f908168ede"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gaef1ea005053b715b851cf5f908168ede">twiddleCoef_256_q31</a> [384]</td></tr>
- <tr class="separator:gaef1ea005053b715b851cf5f908168ede"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga416c61b2f08542a39111e06b0378bebe"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga416c61b2f08542a39111e06b0378bebe">twiddleCoef_512_q31</a> [768]</td></tr>
- <tr class="separator:ga416c61b2f08542a39111e06b0378bebe"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga514443c44b62b8b3d240afefebcda310"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga514443c44b62b8b3d240afefebcda310">twiddleCoef_1024_q31</a> [1536]</td></tr>
- <tr class="separator:ga514443c44b62b8b3d240afefebcda310"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga9c5767de9f5a409fd0c2027e6ac67179"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga9c5767de9f5a409fd0c2027e6ac67179">twiddleCoef_2048_q31</a> [3072]</td></tr>
- <tr class="separator:ga9c5767de9f5a409fd0c2027e6ac67179"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga67c0890317deab3391e276f22c1fc400"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga67c0890317deab3391e276f22c1fc400">twiddleCoef_4096_q31</a> [6144]</td></tr>
- <tr class="separator:ga67c0890317deab3391e276f22c1fc400"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga8e4e2e05f4a3112184c96cb3308d6c39"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga8e4e2e05f4a3112184c96cb3308d6c39">twiddleCoef_16_q15</a> [24]</td></tr>
- <tr class="memdesc:ga8e4e2e05f4a3112184c96cb3308d6c39"><td class="mdescLeft"> </td><td class="mdescRight">q15 Twiddle factors Table <a href="#ga8e4e2e05f4a3112184c96cb3308d6c39">More...</a><br/></td></tr>
- <tr class="separator:ga8e4e2e05f4a3112184c96cb3308d6c39"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gac194a4fe04a19051ae1811f69c6e5df2"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gac194a4fe04a19051ae1811f69c6e5df2">twiddleCoef_32_q15</a> [48]</td></tr>
- <tr class="separator:gac194a4fe04a19051ae1811f69c6e5df2"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gaa0cc411e0b3c82078e85cfdf1b84290f"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gaa0cc411e0b3c82078e85cfdf1b84290f">twiddleCoef_64_q15</a> [96]</td></tr>
- <tr class="separator:gaa0cc411e0b3c82078e85cfdf1b84290f"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gabfdd1c5cd2b3f96da5fe5f07c707a8e5"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gabfdd1c5cd2b3f96da5fe5f07c707a8e5">twiddleCoef_128_q15</a> [192]</td></tr>
- <tr class="separator:gabfdd1c5cd2b3f96da5fe5f07c707a8e5"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga6099ae5262a0a3a8d9ce1e6da02f0c2e"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga6099ae5262a0a3a8d9ce1e6da02f0c2e">twiddleCoef_256_q15</a> [384]</td></tr>
- <tr class="separator:ga6099ae5262a0a3a8d9ce1e6da02f0c2e"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga6152621af210f847128c6f38958fa385"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga6152621af210f847128c6f38958fa385">twiddleCoef_512_q15</a> [768]</td></tr>
- <tr class="separator:ga6152621af210f847128c6f38958fa385"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga8a0ec95d866fe96b740e77d6e1356b59"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga8a0ec95d866fe96b740e77d6e1356b59">twiddleCoef_1024_q15</a> [1536]</td></tr>
- <tr class="separator:ga8a0ec95d866fe96b740e77d6e1356b59"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:gadd16ce08ffd1048c385e0534a3b19cbb"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#gadd16ce08ffd1048c385e0534a3b19cbb">twiddleCoef_2048_q15</a> [3072]</td></tr>
- <tr class="separator:gadd16ce08ffd1048c385e0534a3b19cbb"><td class="memSeparator" colspan="2"> </td></tr>
- <tr class="memitem:ga9b409d6995eab17805b1d1881d4bc652"><td class="memItemLeft" align="right" valign="top">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__CFFT__CIFFT.html#ga9b409d6995eab17805b1d1881d4bc652">twiddleCoef_4096_q15</a> [6144]</td></tr>
- <tr class="separator:ga9b409d6995eab17805b1d1881d4bc652"><td class="memSeparator" colspan="2"> </td></tr>
- </table>
- <a name="details" id="details"></a><h2 class="groupheader">Description</h2>
- <h2 class="groupheader">Variable Documentation</h2>
- <a class="anchor" id="gae247e83ad50d474107254e25b36ad42b"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const uint16_t armBitRevTable[1024]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Pseudo code for Generation of Bit reversal Table is </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (l = 1; l <= N/4; l++)
- {
- for (i = 0; i< logN2; i++)
- {
- a[i] = l & (1 << i);
- }
- for (j = 0; j < logN2; j++)
- {
- if (a[j] != 0)
- y[l] += (1 << ((logN2 - 1) - j));
- }
- y[l] = y[l] >> 1;
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 4096, logN2 = 12 </dd></dl>
- <dl class="section user"><dt></dt><dd>N is the maximum FFT Size supported </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga27c056eb130a4333d1cc5dd43ec738b1"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_1024[2048]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 1024, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga8a0ec95d866fe96b740e77d6e1356b59"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_1024_q15[1536]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 1024, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga514443c44b62b8b3d240afefebcda310"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_1024_q31[1536]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 1024, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga948433536dafaac1381decfccf4e2d9c"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_128[256]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 128, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gabfdd1c5cd2b3f96da5fe5f07c707a8e5"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_128_q15[192]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 128, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gafecf9ed9873415d9f5f17f37b30c7250"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_128_q31[192]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i < 3N/4; i++)
- {
- twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 128, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gae75e243ec61706427314270f222e0c8e"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_16[32]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i < N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 16, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga8e4e2e05f4a3112184c96cb3308d6c39"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_16_q15[24]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>fori = 0; i< 3N/4; i++)
- {
- twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 16, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gaef4697e1ba348c4ac9358f2b9e279e93"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_16_q31[24]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre> for(i = 0; i< 3N/4; i++)
- {
- twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 16, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga23e7f30421a7905b21c2015429779633"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_2048[4096]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 2048, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gadd16ce08ffd1048c385e0534a3b19cbb"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_2048_q15[3072]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 2048, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga9c5767de9f5a409fd0c2027e6ac67179"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_2048_q31[3072]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 2048, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gafe813758a03a798e972359a092315be4"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_256[512]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for(i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 256, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga6099ae5262a0a3a8d9ce1e6da02f0c2e"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_256_q15[384]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 256, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gaef1ea005053b715b851cf5f908168ede"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_256_q31[384]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 256, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga78a72c85d88185de98050c930cfc76e3"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_32[64]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 32, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gac194a4fe04a19051ae1811f69c6e5df2"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_32_q15[48]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 32, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga8ba78d5e6ef4bdc58e8f0044e0664a0a"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_32_q31[48]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 32, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gae0182d1dd3b2f21aad4e38a815a0bd40"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_4096[8192]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 4096, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga9b409d6995eab17805b1d1881d4bc652"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_4096_q15[6144]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 4096, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga67c0890317deab3391e276f22c1fc400"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_4096_q31[6144]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 4096, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gad8830f0c068ab2cc19f2f87d220fa148"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_512[1024]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 512, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga6152621af210f847128c6f38958fa385"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_512_q15[768]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 512, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga416c61b2f08542a39111e06b0378bebe"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_512_q31[768]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 512, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga4f3c6d98c7e66393b4ef3ac63746e43d"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#a4611b605e45ab401f02cab15c5e38715">float32_t</a> twiddleCoef_64[128]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for(i = 0; i < N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 64, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gaa0cc411e0b3c82078e85cfdf1b84290f"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#ab5a8fb21a5b3b983d5f54f31614052ea">q15_t</a> twiddleCoef_64_q15[96]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for q15 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefq15[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefq15[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 64, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to q15(Fixed point 1.15): round(twiddleCoefq15(i) * pow(2, 15)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga6e0a7e941a25a0d74b2e6590307de47e"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const <a class="el" href="arm__math_8h.html#adc89a3547f5324b7b3b95adec3806bc0">q31_t</a> twiddleCoef_64_q31[96]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Q31 Twiddle factors Generation:: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< 3N/4; i++)
- {
- twiddleCoefQ31[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoefQ31[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 64, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are interleaved fashion </dd></dl>
- <dl class="section user"><dt></dt><dd>Convert Floating point to Q31(Fixed point 1.31): round(twiddleCoefQ31(i) * pow(2, 31)) </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga6626143034266d76fafe4195cd59e9ef"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const uint64_t twiddleCoefF64_1024[2048]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 1024, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga252036ff16d9125ae72f547f4565f36f"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const uint64_t twiddleCoefF64_128[256]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 128, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gabeb418730eacdce077316477b7f1e960"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const uint64_t twiddleCoefF64_16[32]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i < N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(double)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(double)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 16, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga0d6a794c1315cceaa884e3bdc736e576"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const uint64_t twiddleCoefF64_2048[4096]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 2048, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga10e83806d2c02cc4f5f07ce46851a673"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const uint64_t twiddleCoefF64_256[512]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for(i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 256, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga3f7d1eaff3c6910ee7d85ae1c9015fe5"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const uint64_t twiddleCoefF64_32[64]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 32, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gac0f43575fce0ab5e30d8731924dbc6d3"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const uint64_t twiddleCoefF64_4096[8192]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 4096, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="gadf57a6c3f49246e356cc72615c5dc8ba"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const uint64_t twiddleCoefF64_512[1024]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for (i = 0; i< N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 512, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- <a class="anchor" id="ga6fe9e2b9200445a2313d7542c586639b"></a>
- <div class="memitem">
- <div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">const uint64_t twiddleCoefF64_64[128]</td>
- </tr>
- </table>
- </div><div class="memdoc">
- <dl class="section user"><dt></dt><dd>Example code for Double Precision Floating-point Twiddle factors Generation: </dd></dl>
- <dl class="section user"><dt></dt><dd><pre>for(i = 0; i < N/; i++)
- {
- twiddleCoef[2*i] = cos(i * 2*PI/(float)N);
- twiddleCoef[2*i+1] = sin(i * 2*PI/(float)N);
- } </pre> </dd></dl>
- <dl class="section user"><dt></dt><dd>where N = 64, PI = 3.14159265358979 </dd></dl>
- <dl class="section user"><dt></dt><dd>Cos and Sin values are in interleaved fashion </dd></dl>
- </div>
- </div>
- </div><!-- contents -->
- </div><!-- doc-content -->
- <!-- start footer part -->
- <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
- <ul>
- <li class="footer">Generated on Thu Apr 9 2020 15:49:23 for CMSIS-DSP Version 1.8.0 by Arm Ltd. All rights reserved.
- <!--
- <a href="http://www.doxygen.org/index.html">
- <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.6
- -->
- </li>
- </ul>
- </div>
- </body>
- </html>
|