arm_convolve_HWC_q7_fast.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380
  1. /*
  2. * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Licensed under the Apache License, Version 2.0 (the License); you may
  7. * not use this file except in compliance with the License.
  8. * You may obtain a copy of the License at
  9. *
  10. * www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  14. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. */
  18. /* ----------------------------------------------------------------------
  19. * Project: CMSIS NN Library
  20. * Title: arm_convolve_HWC_q7_fast.c
  21. * Description: Fast Q7 version of convolution
  22. *
  23. * $Date: January 26, 2021
  24. * $Revision: V.1.0.2
  25. *
  26. * Target Processor: Cortex-M cores
  27. *
  28. * -------------------------------------------------------------------- */
  29. #include "arm_nnfunctions.h"
  30. #include "arm_nnsupportfunctions.h"
  31. /**
  32. * @ingroup groupNN
  33. */
  34. /**
  35. * @addtogroup NNConv
  36. * @{
  37. */
  38. /**
  39. * @brief Fast Q7 convolution function
  40. * @param[in] Im_in pointer to input tensor
  41. * @param[in] dim_im_in input tensor dimention
  42. * @param[in] ch_im_in number of input tensor channels
  43. * @param[in] wt pointer to kernel weights
  44. * @param[in] ch_im_out number of filters, i.e., output tensor channels
  45. * @param[in] dim_kernel filter kernel size
  46. * @param[in] padding padding sizes
  47. * @param[in] stride convolution stride
  48. * @param[in] bias pointer to bias
  49. * @param[in] bias_shift amount of left-shift for bias
  50. * @param[in] out_shift amount of right-shift for output
  51. * @param[in,out] Im_out pointer to output tensor
  52. * @param[in] dim_im_out output tensor dimension
  53. * @param[in,out] bufferA pointer to buffer space for input
  54. * @param[in,out] bufferB pointer to buffer space for output
  55. * @return The function returns either
  56. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  57. *
  58. * @details
  59. *
  60. * <b>Buffer size:</b>
  61. *
  62. * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
  63. *
  64. * bufferB size: 0
  65. *
  66. * <b>Input dimension constraints:</b>
  67. *
  68. * ch_im_in is multiple of 4 ( because of the SIMD32 read and swap )
  69. *
  70. * ch_im_out is multiple of 2 ( bacause 2x2 mat_mult kernel )
  71. *
  72. * The im2col converts the Q7 tensor input into Q15 column, which is stored in
  73. * bufferA. There is reordering happenning during this im2col process with
  74. * arm_q7_to_q15_reordered_no_shift. For every four elements, the second and
  75. * third elements are swapped.
  76. *
  77. * The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the
  78. * GEMM computation with the reordered columns.
  79. *
  80. * To speed-up the determination of the padding condition, we split the
  81. * computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}.
  82. * This reduces the total number of boundary condition checks and improves
  83. * the data copying performance.
  84. */
  85. arm_status arm_convolve_HWC_q7_fast(const q7_t *Im_in,
  86. const uint16_t dim_im_in,
  87. const uint16_t ch_im_in,
  88. const q7_t *wt,
  89. const uint16_t ch_im_out,
  90. const uint16_t dim_kernel,
  91. const uint16_t padding,
  92. const uint16_t stride,
  93. const q7_t *bias,
  94. const uint16_t bias_shift,
  95. const uint16_t out_shift,
  96. q7_t *Im_out,
  97. const uint16_t dim_im_out,
  98. q15_t *bufferA,
  99. q7_t *bufferB)
  100. {
  101. (void)bufferB;
  102. #if defined(ARM_MATH_DSP)
  103. /* Run the following code for Cortex-M4 and Cortex-M7 */
  104. int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
  105. /*
  106. * Here we use bufferA as q15_t internally as computation are done with q15_t level
  107. * im2col are done to output in q15_t format from q7_t input
  108. */
  109. q15_t *pBuffer = bufferA;
  110. q7_t *pOut = Im_out;
  111. if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
  112. {
  113. /* check if the input dimension meets the constraints */
  114. return ARM_MATH_SIZE_MISMATCH;
  115. }
  116. /*
  117. * Here we split the entire matrix into three regions depending on the padding situation
  118. * Top: i_out_y from 0 to padding - 1
  119. * Middle: i_out_y from padding to dim_im_out-padding-1
  120. * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
  121. */
  122. /* top part */
  123. for (i_out_y = 0; i_out_y < padding; i_out_y++)
  124. {
  125. for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
  126. {
  127. /* This part implements the im2col function */
  128. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  129. {
  130. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  131. {
  132. if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
  133. {
  134. /* arm_fill_q15(0, pBuffer, ch_im_in); */
  135. memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
  136. }
  137. else
  138. {
  139. arm_q7_to_q15_reordered_no_shift(
  140. (q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
  141. }
  142. pBuffer += ch_im_in;
  143. }
  144. }
  145. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  146. {
  147. pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
  148. wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  149. /* counter reset */
  150. pBuffer = bufferA;
  151. }
  152. }
  153. }
  154. /* middle part, here we also divide the x into left, mid and right */
  155. for (; i_out_y < dim_im_out - padding; i_out_y++)
  156. {
  157. /* left part */
  158. for (i_out_x = 0; i_out_x < padding; i_out_x++)
  159. {
  160. /* This part implements the im2col function */
  161. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  162. {
  163. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  164. {
  165. if (i_ker_x < 0 || i_ker_x >= dim_im_in)
  166. {
  167. /* arm_fill_q15(0, pBuffer, ch_im_in); */
  168. memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
  169. }
  170. else
  171. {
  172. arm_q7_to_q15_reordered_no_shift(
  173. (q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
  174. }
  175. pBuffer += ch_im_in;
  176. }
  177. }
  178. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  179. {
  180. pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
  181. wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  182. /* counter reset */
  183. pBuffer = bufferA;
  184. }
  185. }
  186. /* mid part */
  187. for (; i_out_x < dim_im_out - padding; i_out_x++)
  188. {
  189. /* This part implements the im2col function */
  190. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  191. {
  192. arm_q7_to_q15_reordered_no_shift((q7_t *)Im_in +
  193. (i_ker_y * dim_im_in + i_out_x * stride - padding) * ch_im_in,
  194. pBuffer,
  195. ch_im_in * dim_kernel);
  196. pBuffer += ch_im_in * dim_kernel;
  197. }
  198. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  199. {
  200. pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
  201. wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  202. /* counter reset */
  203. pBuffer = bufferA;
  204. }
  205. }
  206. /* right part */
  207. for (; i_out_x < dim_im_out; i_out_x++)
  208. {
  209. /* This part implements the im2col function */
  210. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  211. {
  212. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  213. {
  214. if (i_ker_x < 0 || i_ker_x >= dim_im_in)
  215. {
  216. /* arm_fill_q15(0, pBuffer, ch_im_in); */
  217. memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
  218. }
  219. else
  220. {
  221. arm_q7_to_q15_reordered_no_shift(
  222. (q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
  223. }
  224. pBuffer += ch_im_in;
  225. }
  226. }
  227. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  228. {
  229. pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
  230. wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  231. /* counter reset */
  232. pBuffer = bufferA;
  233. }
  234. }
  235. }
  236. for (; i_out_y < dim_im_out; i_out_y++)
  237. {
  238. for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
  239. {
  240. /* This part implements the im2col function */
  241. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  242. {
  243. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  244. {
  245. if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
  246. {
  247. /* arm_fill_q15(0, pBuffer, ch_im_in); */
  248. memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
  249. }
  250. else
  251. {
  252. arm_q7_to_q15_reordered_no_shift(
  253. (q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
  254. }
  255. pBuffer += ch_im_in;
  256. }
  257. }
  258. if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
  259. {
  260. pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
  261. wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  262. /* counter reset */
  263. pBuffer = bufferA;
  264. }
  265. }
  266. }
  267. /* check if there is left-over for compute */
  268. if (pBuffer != bufferA)
  269. {
  270. const q7_t *pA = wt;
  271. int i;
  272. for (i = 0; i < ch_im_out; i++)
  273. {
  274. q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
  275. const q15_t *pB = bufferA;
  276. /* each time it process 4 entries */
  277. uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
  278. while (colCnt)
  279. {
  280. q31_t inA1, inA2;
  281. q31_t inB1, inB2;
  282. pA = read_and_pad_reordered(pA, &inA1, &inA2);
  283. inB1 = arm_nn_read_q15x2_ia(&pB);
  284. sum = __SMLAD(inA1, inB1, sum);
  285. inB2 = arm_nn_read_q15x2_ia(&pB);
  286. sum = __SMLAD(inA2, inB2, sum);
  287. colCnt--;
  288. }
  289. colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
  290. while (colCnt)
  291. {
  292. q7_t inA1 = *pA++;
  293. q15_t inB1 = *pB++;
  294. sum += inA1 * inB1;
  295. colCnt--;
  296. }
  297. *pOut = (q7_t)__SSAT((sum >> out_shift), 8);
  298. pOut++;
  299. }
  300. }
  301. #else
  302. (void)bufferA;
  303. /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
  304. int i, j, k, l, m, n;
  305. int conv_out;
  306. int in_row, in_col;
  307. if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
  308. {
  309. /* check if the input dimension meets the constraints */
  310. return ARM_MATH_SIZE_MISMATCH;
  311. }
  312. for (i = 0; i < ch_im_out; i++)
  313. {
  314. for (j = 0; j < dim_im_out; j++)
  315. {
  316. for (k = 0; k < dim_im_out; k++)
  317. {
  318. conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
  319. for (m = 0; m < dim_kernel; m++)
  320. {
  321. for (n = 0; n < dim_kernel; n++)
  322. {
  323. // if-for implementation
  324. in_row = stride * j + m - padding;
  325. in_col = stride * k + n - padding;
  326. if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
  327. {
  328. for (l = 0; l < ch_im_in; l++)
  329. {
  330. conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + l] *
  331. wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + n) * ch_im_in + l];
  332. }
  333. }
  334. }
  335. }
  336. Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t)__SSAT((conv_out >> out_shift), 8);
  337. }
  338. }
  339. }
  340. #endif /* ARM_MATH_DSP */
  341. /* Return to application */
  342. return ARM_MATH_SUCCESS;
  343. }
  344. /**
  345. * @} end of NNConv group
  346. */