| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233 |
- #!/usr/bin/env python3
- #
- # Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
- #
- # SPDX-License-Identifier: Apache-2.0
- #
- # Licensed under the Apache License, Version 2.0 (the License); you may
- # not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an AS IS BASIS, WITHOUT
- # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import os
- import sys
- import math
- import random
- import argparse
- import subprocess
- import numpy as np
- from collections import deque
- from packaging import version
- from abc import ABC, abstractmethod
- try:
- import tensorflow as tf
- except Exception as e:
- print(e)
- sys.exit(1)
- REQUIRED_MINIMUM_TENSORFLOW_VERSION = version.parse("2.1.0")
- DEFAULT_TESTDATA_SET = 'basic'
- ALL_TESTDATA_SETS = {}
- CLANG_FORMAT = 'clang-format-9 -i'
- LICENSE = """/*
- * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- """
- def parse_args():
- parser = argparse.ArgumentParser(description="Generate input and refererence output data for unittests."
- " It can regenerate all data, load all stored data or a combination of it.")
- parser.add_argument('--dataset', type=str, default=DEFAULT_TESTDATA_SET, help="Name of generated test set.")
- parser.add_argument('--regenerate-weights', action='store_true', help="Regenerate and store new weights.")
- parser.add_argument('--regenerate-input', action='store_true', help="Regenerate and store new input.")
- parser.add_argument('--regenerate-biases', action='store_true', help="Regenerate and store new biases.")
- parser.add_argument('-a', '--regenerate-all', action='store_true', help="Regenerate and store all data.")
- parser.add_argument('-t', '--testtype', type=str, default='conv', choices=['conv', 'depthwise_conv', 'avgpool',
- 'maxpool', 'fully_connected', 'softmax',
- 'svdf'],
- help='Type of test.')
- parser.add_argument('--run-all-testsets', action='store_true', help="Run the script for all existing test "
- "sets. Regenerate all, partially all or no input data (output may still change, depending on"
- " changes in script) depending on regenerate flags.")
- args = parser.parse_args()
- return args
- class TestSettings(ABC):
- # This is the generated test data used by the test cases.
- OUTDIR = 'TestCases/TestData/'
- # This is input to the data generation. If everything or something is regenerated then it is overwritten.
- # So it always has the same data as the OUTDIR.
- # The purpose of the pregen is primarily for debugging, as it enables to change a single parameter and see how the
- # output changes, without regenerating all input data.
- # It also convinient when tesing changes in the script, to be able to run all test sets again.
- PREGEN = 'PregeneratedData/'
- INT32_MAX = 2147483647
- INT32_MIN = -2147483648
- INT16_MAX = 32767
- INT16_MIN = -32767
- INT8_MAX = 127
- INT8_MIN = -128
- UINT8_MAX = 255
- UINT8_MIN = 0
- def __init__(self, dataset, testtype, args, in_ch, out_ch, x_in, y_in, w_x, w_y, stride_x, stride_y, pad, randmin,
- randmax, outminrange=-128, outmaxrange=127, batches=1, generate_bias=True, relu6=False,
- out_activation_min=None, out_activation_max=None):
- self.tensor_flow_reference_version = ("// Generated by {} using TFL version {} as reference.\n".
- format(os.path.basename(__file__), tf.__version__))
- # Randomization interval
- self.mins = randmin
- self.maxs = randmax
- self.relu6 = relu6
- self.input_ch = in_ch
- self.output_ch = out_ch
- self.x_input = x_in
- self.y_input = y_in
- self.filter_x = w_x
- self.filter_y = w_y
- self.stride_x = stride_x
- self.stride_y = stride_y
- self.batches = batches
- self.test_type = testtype
- self.has_padding = pad
- if out_activation_min:
- self.out_activation_min = out_activation_min
- else:
- self.out_activation_min = self.INT8_MIN
- if out_activation_max:
- self.out_activation_max = out_activation_max
- else:
- self.out_activation_max = self.INT8_MAX
- minrange = randmin - 1
- maxrange = randmax + 1
- (self.input_scale, self.input_zero_point) = self.derive_scale_and_zeropoint_from_min_max(minrange, maxrange)
- (self.output_scale, self.output_zero_point) = self.derive_scale_and_zeropoint_from_min_max(outminrange,
- outmaxrange)
- # Always use output scale of 1, when derived it sometimes gets slighly smaller than 1,
- # which may cause output to differ.
- self.output_scale = 1.0
- # Bias is optional.
- self.generate_bias = generate_bias
- self.generated_header_files = []
- self.pregenerated_data_dir = self.PREGEN
- self.testdataset = DEFAULT_TESTDATA_SET
- self.config_data = "config_data.h"
- self.testdataset = dataset
- self.kernel_table_file = self.pregenerated_data_dir + self.testdataset + '/' + 'kernel.txt'
- self.inputs_table_file = self.pregenerated_data_dir + self.testdataset + '/' + 'input.txt'
- self.bias_table_file = self.pregenerated_data_dir + self.testdataset + '/' + 'bias.txt'
- self.parameters_file = self.pregenerated_data_dir + self.testdataset + '/' + 'params.txt'
- self.set_output_dims_and_padding()
- self.regenerate_new_weights = args.regenerate_weights
- self.regenerate_new_input = args.regenerate_input
- self.regenerate_new_bias = args.regenerate_biases
- if not os.path.exists(self.parameters_file) or args.regenerate_all:
- self.regenerate_new_bias = True
- self.regenerate_new_weights = True
- self.regenerate_new_input = True
- self.save_parameters()
- else:
- self.load_parameters()
- self.headers_dir = self.OUTDIR + self.testdataset + '/'
- def clamp(self, result, smallest, largest):
- return max(smallest, min(result, largest))
- def quantize_input(self, value):
- result = round(value / self.input_scale) + self.input_zero_point
- return self.clamp(result, self.INT8_MIN, self.INT8_MAX)
- def derive_scale_from_min_max(self, minrange, maxrange):
- scale = (maxrange - minrange) / ((self.INT8_MAX * 1.0) - self.INT8_MIN)
- return scale
- def derive_scale_and_zeropoint_from_min_max(self, minrange, maxrange):
- scale = self.derive_scale_from_min_max(minrange, maxrange)
- zeropoint = self.INT8_MIN + int(-minrange / scale + 0.5)
- zeropoint = max(self.INT8_MIN, min(zeropoint, -self.INT8_MIN))
- return (scale, zeropoint)
- def save_multiple_dim_array_in_txt(self, file, data):
- header = ','.join(map(str, data.shape))
- np.savetxt(file, data.reshape(-1, data.shape[-1]), header=header,
- delimiter=',')
- def load_multiple_dim_array_from_txt(self, file):
- with open(file) as f:
- shape = list(map(int, next(f)[1:].split(',')))
- data = np.genfromtxt(f, delimiter=',').reshape(shape)
- return data.astype(np.float32)
- def save_parameters(self):
- regendir = os.path.dirname(self.parameters_file)
- if not os.path.exists(regendir):
- os.makedirs(regendir)
- params = np.array([self.input_ch, self.output_ch, self.x_input, self.y_input, self.filter_x, self.filter_y,
- self.stride_x, self.stride_y, self.pad_x, self.pad_y, self.batches, self.has_padding])
- np.savetxt(self.parameters_file, params, fmt='%i')
- def load_parameters(self):
- params = np.loadtxt(self.parameters_file).astype(int)
- (self.input_ch, self.output_ch, self.x_input, self.y_input, self.filter_x, self.filter_y,
- self.stride_x, self.stride_y, self.pad_x, self.pad_y, self.batches, self.has_padding) = \
- (map(lambda x: x, params))
- def convert_tensor_np(self, tensor_in, converter):
- w = tensor_in.numpy()
- shape = w.shape
- w = w.ravel()
- fw = converter(w)
- fw.shape = shape
- return tf.convert_to_tensor(fw)
- def convert_tensor(self, tensor_in, converter, params=None):
- w = tensor_in.numpy()
- shape = w.shape
- w = w.ravel()
- normal = np.array(w)
- float_normal = []
- for i in normal:
- if params:
- float_normal.append(converter(i, params))
- else:
- float_normal.append(converter(i))
- np_float_array = np.asarray(float_normal)
- np_float_array.shape = shape
- return tf.convert_to_tensor(np_float_array)
- def get_randomized_data(self, dims, npfile, regenerate, decimals=0, minrange=None, maxrange=None):
- if not minrange:
- minrange = self.mins
- if not maxrange:
- maxrange = self.maxs
- if not os.path.exists(npfile) or regenerate:
- regendir = os.path.dirname(npfile)
- if not os.path.exists(regendir):
- os.makedirs(regendir)
- if decimals == 0:
- data = tf.Variable(tf.random.uniform(dims, minval=minrange, maxval=maxrange, dtype=tf.dtypes.int32))
- data = tf.cast(data, dtype=tf.float32)
- else:
- data = tf.Variable(tf.random.uniform(dims, minval=minrange, maxval=maxrange, dtype=tf.dtypes.float32))
- data = np.around(data.numpy(), decimals)
- data = tf.convert_to_tensor(data)
- print("Saving data to {}".format(npfile))
- self.save_multiple_dim_array_in_txt(npfile, data.numpy())
- else:
- print("Loading data from {}".format(npfile))
- data = tf.convert_to_tensor(self.load_multiple_dim_array_from_txt(npfile))
- return data
- def get_randomized_input_data(self, input_data):
- # Generate or load saved input data unless hardcoded data provided
- if input_data is not None:
- input_data = tf.reshape(input_data, [self.batches, self.y_input, self.x_input, self.input_ch])
- else:
- input_data = self.get_randomized_data([self.batches, self.y_input, self.x_input, self.input_ch],
- self.inputs_table_file,
- regenerate=self.regenerate_new_input)
- return input_data
- def get_randomized_bias_data(self, biases):
- # Generate or load saved bias data unless hardcoded data provided
- if not self.generate_bias:
- biases = tf.reshape(np.full([self.output_ch], 0), [self.output_ch])
- elif biases is not None:
- biases = tf.reshape(biases, [self.output_ch])
- else:
- biases = self.get_randomized_data([self.output_ch],
- self.bias_table_file,
- regenerate=self.regenerate_new_bias)
- return biases
- def format_output_file(self, file):
- command_list = CLANG_FORMAT.split(' ')
- command_list.append(file)
- process = subprocess.run(command_list)
- if process.returncode != 0:
- print("ERROR: {} failed".format(command_list))
- sys.exit(1)
- def write_c_header_wrapper(self):
- filename = "test_data.h"
- filepath = self.headers_dir + filename
- print("Generating C header wrapper {}...".format(filepath))
- with open(filepath, 'w+') as f:
- f.write("{}\n\n".format(LICENSE))
- f.write(self.tensor_flow_reference_version)
- while len(self.generated_header_files) > 0:
- f.write('#include "{}"\n'.format(self.generated_header_files.pop()))
- self.format_output_file(filepath)
- def write_common_config(self, f, prefix):
- """
- Shared by conv/depthwise_conv and pooling
- """
- f.write("#define {}_FILTER_X {}\n".format(prefix, self.filter_x))
- f.write("#define {}_FILTER_Y {}\n".format(prefix, self.filter_y))
- f.write("#define {}_STRIDE_X {}\n".format(prefix, self.stride_x))
- f.write("#define {}_STRIDE_Y {}\n".format(prefix, self.stride_y))
- f.write("#define {}_PAD_X {}\n".format(prefix, self.pad_x))
- f.write("#define {}_PAD_Y {}\n".format(prefix, self.pad_y))
- f.write("#define {}_OUTPUT_W {}\n".format(prefix, self.x_output))
- f.write("#define {}_OUTPUT_H {}\n".format(prefix, self.y_output))
- def write_c_common_header(self, f):
- f.write("{}\n\n".format(LICENSE))
- f.write(self.tensor_flow_reference_version)
- f.write("#pragma once\n")
- def write_c_header_offsets(self, f, prefix):
- f.write("#define {}_INPUT_OFFSET {}\n".format(prefix, -self.input_zero_point))
- f.write("#define {}_OUTPUT_OFFSET {}\n".format(prefix, self.output_zero_point))
- def write_c_config_header(self, write_common_parameters=True):
- filename = self.config_data
- self.generated_header_files.append(filename)
- filepath = self.headers_dir + filename
- prefix = self.testdataset.upper()
- print("Writing C header with config data {}...".format(filepath))
- with open(filepath, "w+") as f:
- self.write_c_common_header(f)
- if (write_common_parameters):
- f.write("#define {}_OUT_CH {}\n".format(prefix, self.output_ch))
- f.write("#define {}_IN_CH {}\n".format(prefix, self.input_ch))
- f.write("#define {}_INPUT_W {}\n".format(prefix, self.x_input))
- f.write("#define {}_INPUT_H {}\n".format(prefix, self.y_input))
- f.write("#define {}_DST_SIZE {}\n".format(prefix, self.x_output * self.y_output * self.output_ch
- * self.batches))
- f.write("#define {}_INPUT_SIZE {}\n".format(prefix, self.x_input * self.y_input * self.input_ch))
- if self.relu6:
- f.write("#define {}_OUT_ACTIVATION_MIN {}\n".format(prefix, 0))
- f.write("#define {}_OUT_ACTIVATION_MAX {}\n".format(prefix, 6))
- else:
- f.write("#define {}_OUT_ACTIVATION_MIN {}\n".format(prefix, self.out_activation_min))
- f.write("#define {}_OUT_ACTIVATION_MAX {}\n".format(prefix, self.out_activation_max))
- f.write("#define {}_INPUT_BATCHES {}\n".format(prefix, self.batches))
- self.format_output_file(filepath)
- def generate_c_array(self, name, array, datatype="q7_t", const="const "):
- if not os.path.exists(self.headers_dir):
- os.makedirs(self.headers_dir)
- w = None
- if type(array) is list:
- w = array
- size = len(array)
- else:
- w = array.numpy()
- w = w.ravel()
- size = tf.size(array)
- filename = name + "_data.h"
- filepath = self.headers_dir + filename
- self.generated_header_files.append(filename)
- print("Generating C header {}...".format(filepath))
- with open(filepath, "w+") as f:
- self.write_c_common_header(f)
- f.write("#include <stdint.h>\n\n")
- f.write(const + datatype + " " + self.testdataset + '_' + name + "[%d] =\n{\n" % size)
- for i in range(size - 1):
- f.write(" %d,\n" % w[i])
- f.write(" %d\n" % w[size - 1])
- f.write("};\n")
- self.format_output_file(filepath)
- def quantize_output(self, value):
- result = round(value / self.output_scale) + self.output_zero_point
- return self.clamp(result, self.out_activation_min, self.out_activation_max)
- def set_output_dims_and_padding(self):
- if self.has_padding:
- self.x_output = math.ceil(float(self.x_input) / float(self.stride_x))
- self.y_output = math.ceil(float(self.y_input) / float(self.stride_y))
- self.padding = 'SAME'
- pad_along_width = max((self.x_output - 1) * self.stride_x + self.filter_x - self.x_input, 0)
- pad_along_height = max((self.y_output - 1) * self.stride_y + self.filter_y - self.y_input, 0)
- pad_top = pad_along_height // 2
- pad_left = pad_along_width // 2
- self.pad_x = pad_left
- self.pad_y = pad_top
- else:
- self.x_output = math.ceil(float(self.x_input - self.filter_x + 1) / float(self.stride_x))
- self.y_output = math.ceil(float(self.y_input - self.filter_y + 1) / float(self.stride_y))
- self.padding = 'VALID'
- self.pad_x = 0
- self.pad_y = 0
- @abstractmethod
- def generate_data(self, input_data=None, weights=None, biases=None):
- ''' Must be overriden '''
- def reshape_conv_kernel(self, kernel):
- """
- TFL & TFLu conv weight format: kOHWI
- Tensorflow conv weight format: kHWIO
- """
- kernel = tf.reshape(kernel, [self.output_ch, self.filter_y, self.filter_x, self.input_ch])
- kernel = tf.transpose(kernel, (1, 2, 0, 3))
- kernel = tf.transpose(kernel, (0, 1, 3, 2))
- return kernel
- def reshape_depthwise_conv_kernel(self, kernel):
- """
- TFL & TFLu depthwise conv weight format: k1HWO
- Tensorflow depthwise conv weight format: kHWIM
- """
- kernel = tf.reshape(kernel, [1, self.filter_y, self.filter_x, self.output_ch])
- kernel = tf.transpose(kernel, (1, 0, 2, 3))
- kernel = tf.transpose(kernel, (0, 2, 1, 3))
- kernel = tf.reshape(kernel, [self.filter_y, self.filter_x, self.input_ch, self.channel_multiplier])
- return kernel
- def conv2d(self, indata, weights, bias=None):
- """
- There is no tf.nn.fully_connected so this is used by fully_connected tests as well.
- """
- indata = tf.cast(indata, dtype=tf.dtypes.float32)
- weights = tf.cast(weights, dtype=tf.dtypes.float32)
- bias = tf.cast(bias, dtype=tf.dtypes.float32)
- out = tf.nn.conv2d(indata, weights, strides=[1, self.stride_y, self.stride_x, 1], padding=self.padding)
- if tf.TensorShape([self.batches, self.y_output, self.x_output, self.output_ch]).as_list() != \
- out.shape.as_list():
- raise RuntimeError("Shape mismatch, need to regenerate data?")
- out = tf.nn.bias_add(out, bias)
- out = tf.clip_by_value(out, self.out_activation_min, self.out_activation_max)
- return out
- def quantize_scale(self, scale):
- significand, shift = math.frexp(scale)
- significand_q31 = round(significand * (1 << 31))
- return significand_q31, shift
- class ConvSettings(TestSettings):
- def __init__(self, dataset, testtype, args, in_ch=1, out_ch=1, x_in=7, y_in=7, w_x=3, w_y=3, stride_x=2, stride_y=2,
- pad=True, randmin=-7, randmax=7, outminrange=-128, outmaxrange=127, batches=1, generate_bias=True,
- relu6=False, out_activation_min=None, out_activation_max=None):
- super().__init__(dataset, testtype, args, in_ch, out_ch, x_in, y_in, w_x, w_y, stride_x, stride_y, pad,
- randmin, randmax, outminrange, outmaxrange, batches, generate_bias=generate_bias, relu6=relu6,
- out_activation_min=out_activation_min, out_activation_max=out_activation_max)
- self.scaling_factors = []
- if self.test_type == 'conv':
- self.quantized_dimension = 0
- elif self.test_type == 'depthwise_conv':
- self.quantized_dimension = 3
- self.channel_multiplier = self.output_ch // self.input_ch
- if self.output_ch % self.input_ch != 0:
- raise RuntimeError("out channel ({}) is not multiple of in channel ({})".format(out_ch, in_ch))
- else:
- raise RuntimeError("Invalid test type {}".format(self.test_type))
- def write_c_config_header(self):
- super().write_c_config_header()
- filename = self.config_data
- filepath = self.headers_dir + filename
- prefix = self.testdataset.upper()
- with open(filepath, "a") as f:
- self.write_c_header_offsets(f, prefix)
- self.write_common_config(f, prefix)
- if self.test_type == 'depthwise_conv':
- f.write("#define {}_CH_MULT {}\n".format(prefix, self.channel_multiplier))
- def quantize_bias(self, nparray):
- num_channels = self.output_ch
- quantized_values = []
- values = np.array(nparray)
- def quantize_float_to_int(value, scale):
- if scale == 0:
- print("WARNING: scale is 0")
- scale = 0.0000001
- quantized = round(value / scale)
- if quantized > self.INT16_MAX:
- quantized = self.INT16_MAX
- elif quantized < self.INT16_MIN:
- quantized = self.INT16_MIN
- return quantized
- for x in range(num_channels):
- quantized_values.append(quantize_float_to_int(values[x], self.scaling_factors[x]*self.input_scale))
- return np.asarray(quantized_values)
- def quantize_filter(self, nparray):
- channel_count = self.output_ch
- if self.quantized_dimension == 0:
- input_size = self.filter_y * self.filter_x * self.input_ch * self.output_ch
- elif self.quantized_dimension == 3:
- input_size = self.filter_y * self.filter_x * self.input_ch * self.channel_multiplier
- per_channel_size = input_size // channel_count
- if self.quantized_dimension == 0:
- stride = 1
- channel_stride = per_channel_size
- elif self.quantized_dimension == 3:
- stride = channel_count
- channel_stride = 1
- values = np.array(nparray)
- quantized_values = values.copy()
- for channel in range(channel_count):
- fmin = 0
- fmax = 0
- for i in range(per_channel_size):
- idx = channel * channel_stride + i * stride
- fmin = min(fmin, values[idx])
- fmax = max(fmax, values[idx])
- self.scaling_factors.append(max(abs(fmin), abs(fmax)) / self.INT8_MAX)
- for x in range(per_channel_size):
- chs = channel * channel_stride + x * stride
- quantized_value = round(round(values[chs]) / self.scaling_factors[channel])
- # Clamp
- quantized_value = min(127, max(-127, quantized_value))
- quantized_values[chs] = quantized_value
- return np.asarray(quantized_values)
- def generate_quantize_per_channel_multiplier(self):
- num_channels = self.output_ch
- per_channel_multiplier = []
- per_channel_shift = []
- if len(self.scaling_factors) != num_channels:
- raise RuntimeError("Missing scaling factors")
- for i in range(num_channels):
- effective_output_scale = self.input_scale * self.scaling_factors[i] / self.output_scale
- (quantized_multiplier, shift) = self.quantize_scale(effective_output_scale)
- per_channel_multiplier.append(quantized_multiplier)
- per_channel_shift.append(shift)
- self.generate_c_array("output_mult", per_channel_multiplier, datatype='int32_t')
- self.generate_c_array("output_shift", per_channel_shift, datatype='int32_t')
- def depthwise_conv2d(self, indata, weights, bias=None):
- indata = tf.cast(indata, dtype=tf.dtypes.float32)
- weights = tf.cast(weights, dtype=tf.dtypes.float32)
- bias = tf.cast(bias, dtype=tf.dtypes.float32)
- out = tf.nn.depthwise_conv2d(indata,
- weights,
- strides=[1, self.stride_y, self.stride_x, 1],
- padding=self.padding)
- if tf.TensorShape([self.batches, self.y_output, self.x_output, self.output_ch]) \
- .as_list() != out.shape.as_list():
- raise RuntimeError("Shape mismatch, regenerate data?")
- out = tf.nn.bias_add(out, bias)
- out = tf.clip_by_value(out, self.out_activation_min, self.out_activation_max)
- return out
- def generate_data(self, input_data=None, weights=None, biases=None):
- # Tensorflow Lite has a different kernel format compared to Tensorflow
- reshaped_weights = None
- input_data = self.get_randomized_input_data(input_data)
- if self.test_type == 'conv':
- out_channel = self.output_ch
- elif self.test_type == 'depthwise_conv':
- out_channel = self.channel_multiplier
- if weights is not None:
- weights = tf.reshape(weights, [self.filter_y, self.filter_x, self.input_ch, out_channel])
- else:
- weights = self.get_randomized_data([self.filter_y, self.filter_x, self.input_ch, out_channel],
- self.kernel_table_file,
- regenerate=self.regenerate_new_weights)
- if self.test_type == 'conv':
- reshaped_weights = self.reshape_conv_kernel(weights)
- elif self.test_type == 'depthwise_conv':
- reshaped_weights = self.reshape_depthwise_conv_kernel(weights)
- biases = self.get_randomized_bias_data(biases)
- # Generate reference
- if self.test_type == 'conv':
- conv = self.conv2d(input_data, reshaped_weights, biases)
- elif self.test_type == 'depthwise_conv':
- conv = self.depthwise_conv2d(input_data, reshaped_weights, biases)
- # Quantize and write to C headers
- self.generate_c_array("input", self.convert_tensor(input_data, self.quantize_input))
- self.generate_c_array("weights", self.convert_tensor_np(weights, self.quantize_filter))
- self.generate_c_array("biases", self.convert_tensor_np(biases, self.quantize_bias), "int32_t")
- self.generate_quantize_per_channel_multiplier()
- self.generate_c_array("output_ref", self.convert_tensor(conv, self.quantize_output))
- self.write_c_config_header()
- self.write_c_header_wrapper()
- class PoolingSettings(TestSettings):
- def __init__(self, dataset, testtype, args, randmin=-7, randmax=7, channels=8, x_in=4, y_in=4, w_x=4, w_y=4,
- stride_x=1, stride_y=1, batches=1, pad=False, relu6=False):
- super().__init__(dataset, testtype, args, channels, channels, x_in, y_in, w_x, w_y, stride_x, stride_y, pad,
- randmin, randmax, relu6=relu6)
- def generate_data(self, input_data=None):
- input_data = self.get_randomized_input_data(input_data)
- input_data = self.convert_tensor(input_data, self.quantize_input)
- self.generate_c_array("input", input_data, datatype="int8_t")
- input_data = tf.cast(input_data, tf.float32)
- if self.test_type == 'avgpool':
- pooling = self.average_pooling(input_data)
- elif self.test_type == 'maxpool':
- pooling = self.max_pooling(input_data)
- else:
- raise RuntimeError("Wrong test type")
- if self.y_output != pooling.shape[1] or self.x_output != pooling.shape[2] or self.output_ch != pooling.shape[3]:
- raise RuntimeError("Mismatching output dimensions")
- self.generate_c_array("output_ref", self.convert_tensor(pooling, self.quantize_output), datatype="int8_t")
- self.write_c_config_header()
- self.write_c_header_wrapper()
- def write_c_config_header(self):
- super().write_c_config_header()
- filename = self.config_data
- filepath = self.headers_dir + filename
- prefix = self.testdataset.upper()
- with open(filepath, "a") as f:
- self.write_common_config(f, prefix)
- def average_pooling(self, x):
- result = tf.nn.avg_pool(x,
- ksize=[1, self.filter_y, self.filter_x, 1],
- strides=[1, self.stride_y, self.stride_x, 1],
- padding=self.padding)
- if self.relu6:
- return tf.nn.relu6(result)
- else:
- return result
- def max_pooling(self, x):
- maxpool = tf.nn.max_pool(x,
- ksize=[1, self.filter_y, self.filter_x, 1],
- strides=[1, self.stride_y, self.stride_x, 1],
- padding=self.padding)
- if self.relu6:
- return tf.nn.relu6(maxpool)
- else:
- return maxpool
- class FullyConnectedSettings(TestSettings):
- def __init__(self, dataset, testtype, args, in_ch=1, out_ch=1, x_in=1, y_in=1, w_x=1, w_y=1, stride_x=1, stride_y=1,
- pad=False, randmin=-4, randmax=4, outminrange=-128, outmaxrange=127, batches=1, input_scale=1.0,
- input_zero_point=0, weights_scale=1.0, bias_scale=1.0, output_scale=1.0,
- output_zero_point=0, generate_bias=True, out_activation_min=None, out_activation_max=None):
- super().__init__(dataset, testtype, args, in_ch, out_ch, x_in, y_in, w_x, w_y, stride_x, stride_y, pad, randmin,
- randmax, outminrange, outmaxrange, batches, generate_bias=generate_bias,
- out_activation_min=out_activation_min, out_activation_max=out_activation_max)
- if not self.test_type == 'fully_connected':
- raise RuntimeError("Invalid test type {}".format(self.test_type))
- if x_in != w_x or y_in != w_y:
- raise RuntimeError("Mismatching input and filter dimensions")
- self.input_scale = input_scale
- self.input_zero_point = input_zero_point
- self.weights_scale = weights_scale
- self.bias_scale = bias_scale
- self.output_scale = output_scale
- self.output_zero_point = output_zero_point
- def write_c_config_header(self):
- super().write_c_config_header()
- filename = self.config_data
- filepath = self.headers_dir + filename
- prefix = self.testdataset.upper()
- with open(filepath, "a") as f:
- self.write_c_header_offsets(f, prefix)
- f.write("#define {}_OUTPUT_MULTIPLIER {}\n".format(prefix, self.quantized_multiplier))
- f.write("#define {}_OUTPUT_SHIFT {}\n".format(prefix, self.quantized_shift))
- f.write("#define {}_ACCUMULATION_DEPTH {}\n".format(prefix, self.input_ch*self.x_input*self.y_input))
- def quantize_multiplier(self):
- input_product_scale = self.input_scale * self.weights_scale
- if input_product_scale < 0:
- raise RuntimeError("negative input product scale")
- real_multipler = input_product_scale / self.output_scale
- (self.quantized_multiplier, self.quantized_shift) = self.quantize_scale(real_multipler)
- def derive_filter_scale_and_zeropoint_from_min_max(self, mini, maxi):
- scale = self.derive_scale_from_min_max(mini, maxi)
- zero = int(self.INT8_MIN + (-mini/scale + 0.5))
- return (scale, zero)
- def quantize_bias(self, value):
- result = int(value / self.bias_scale)
- return self.clamp(result, self.INT32_MIN, self.INT32_MAX)
- def quantize_weights(self, value):
- result = round(value / self.weights_scale)
- return self.clamp(result, self.INT8_MIN, self.INT8_MAX)
- def generate_data(self, input_data=None, weights=None, biases=None):
- input_data = self.get_randomized_input_data(input_data)
- if weights is not None:
- weights = tf.reshape(weights, [self.filter_y, self.filter_x, self.input_ch, self.output_ch])
- else:
- weights = self.get_randomized_data([self.filter_y, self.filter_x, self.input_ch, self.output_ch],
- self.kernel_table_file,
- regenerate=self.regenerate_new_weights)
- biases = self.get_randomized_bias_data(biases)
- conv = self.conv2d(input_data, self.reshape_conv_kernel(weights), biases)
- self.generate_c_array("input", self.convert_tensor(input_data, self.quantize_input))
- self.generate_c_array("weights", self.convert_tensor(weights, self.quantize_weights))
- self.generate_c_array("biases", self.convert_tensor(biases, self.quantize_bias), "int32_t")
- self.generate_c_array("output_ref", self.convert_tensor(conv, self.quantize_output))
- self.quantize_multiplier()
- self.write_c_config_header()
- self.write_c_header_wrapper()
- class SoftmaxSettings(TestSettings):
- softmax_input_integer_bits = 5
- def __init__(self, dataset, testtype, args, x_in=5, y_in=1, randmin=-7, randmax=7):
- super().__init__(dataset, testtype, args, 1, 1, x_in, y_in, 1, 1, 1, 1, False, randmin,
- randmax)
- self.output_scale = 1 / 256
- self.output_zero_point = -128
- self.x_input = self.x_output = x_in
- self.y_input = self.y_output = y_in
- input_real_multiplier = min(self.input_scale * (1 << (31 - self.softmax_input_integer_bits)),
- (1 << 31) - 1)
- (self.input_multiplier, self.input_left_shift) = self.quantize_scale(input_real_multiplier)
- self.diff_min = ((1 << self.softmax_input_integer_bits) - 1) * \
- (1 << (31 - self.softmax_input_integer_bits)) / \
- (1 << self.input_left_shift)
- self.diff_min = math.floor(self.diff_min)
- def write_c_config_header(self):
- super().write_c_config_header(write_common_parameters=False)
- filename = self.config_data
- filepath = self.headers_dir + filename
- prefix = self.testdataset.upper()
- with open(filepath, "a") as f:
- f.write("#define {}_NUM_ROWS {}\n".format(prefix, self.y_input))
- f.write("#define {}_ROW_SIZE {}\n".format(prefix, self.x_input))
- f.write("#define {}_INPUT_MULT {}\n".format(prefix, self.input_multiplier))
- f.write("#define {}_INPUT_LEFT_SHIFT {}\n".format(prefix, self.input_left_shift))
- f.write("#define {}_DIFF_MIN {}\n".format(prefix, -self.diff_min))
- f.write("#define {}_DST_SIZE {}\n".format(prefix, self.x_output * self.y_output))
- def get_softmax_randomized_input_data(self, input_data):
- # Generate or load saved input data unless hardcoded data provided.
- if input_data is not None:
- input_data = tf.reshape(input_data, [self.y_input, self.x_input])
- else:
- input_data = self.get_randomized_data([self.y_input, self.x_input],
- self.inputs_table_file,
- regenerate=self.regenerate_new_input)
- return input_data
- def softmax(self, indata):
- indata = tf.cast(indata, dtype=tf.dtypes.float32)
- out = tf.nn.softmax(indata)
- return out
- def generate_data(self, input_data=None, weights=None, biases=None):
- input_data = self.get_softmax_randomized_input_data(input_data)
- result = self.softmax(input_data)
- self.generate_c_array("input", self.convert_tensor(input_data, self.quantize_input))
- self.generate_c_array("output_ref", self.convert_tensor(result, self.quantize_output))
- self.write_c_config_header()
- self.write_c_header_wrapper()
- class SVDFSettings(TestSettings):
- def __init__(self, dataset, testtype, args, batches=2, number_inputs=2, rank=8, memory_size=10, randmin=-4,
- randmax=4, input_size=3, number_units=4, generate_bias=True):
- super().__init__(dataset, testtype, args, 1, 1, 1, 1, 1, 1, 1, 1, False, randmin,
- randmax, generate_bias=generate_bias)
- self.batches = batches
- self.number_units = number_units
- self.input_size = input_size
- self.memory_size = memory_size
- self.rank = rank
- self.number_filters = self.number_units * self.rank
- self.time_table_file = self.pregenerated_data_dir + self.testdataset + '/' + 'time_data.txt'
- self.state_table_file = self.pregenerated_data_dir + self.testdataset + '/' + 'state_data.txt'
- self.weights_feature_scale = 1
- self.weights_feature_scale = 1
- self.weights_time_scale = 1
- self.state_scale = 1
- self.bias_scale = 1
- self.number_inputs = number_inputs
- self.input_sequence_length = self.number_inputs * self.input_size * self.batches
- effective_scale_1 = self.weights_feature_scale * self.input_scale / self.state_scale
- effective_scale_2 = self.state_scale * self.weights_time_scale / self.output_scale
- (self.multiplier_in, self.shift_1) = self.quantize_scale(effective_scale_1)
- (self.multiplier_out, self.shift_2) = self.quantize_scale(effective_scale_2)
- self.in_activation_max = self.INT16_MAX
- self.in_activation_min = self.INT16_MIN
- def write_c_config_header(self):
- super().write_c_config_header(write_common_parameters=False)
- filename = self.config_data
- filepath = self.headers_dir + filename
- prefix = self.testdataset.upper()
- with open(filepath, "a") as f:
- self.write_c_header_offsets(f, prefix)
- f.write("#define {}_MULTIPLIER_IN {}\n".format(prefix, self.multiplier_in))
- f.write("#define {}_MULTIPLIER_OUT {}\n".format(prefix, self.multiplier_out))
- f.write("#define {}_SHIFT_1 {}\n".format(prefix, self.shift_1))
- f.write("#define {}_SHIFT_2 {}\n".format(prefix, self.shift_2))
- f.write("#define {}_IN_ACTIVATION_MIN {}\n".format(prefix, self.in_activation_min))
- f.write("#define {}_IN_ACTIVATION_MAX {}\n".format(prefix, self.in_activation_max))
- f.write("#define {}_RANK {}\n".format(prefix, self.rank))
- f.write("#define {}_FEATURE_BATCHES {}\n".format(prefix, self.number_filters))
- f.write("#define {}_TIME_BATCHES {}\n".format(prefix, self.memory_size))
- f.write("#define {}_INPUT_SIZE {}\n".format(prefix, self.input_size))
- f.write("#define {}_DST_SIZE {}\n".format(prefix, self.number_units * self.batches))
- f.write("#define {}_OUT_ACTIVATION_MIN {}\n".format(prefix, self.out_activation_min))
- f.write("#define {}_OUT_ACTIVATION_MAX {}\n".format(prefix, self.out_activation_max))
- f.write("#define {}_INPUT_BATCHES {}\n".format(prefix, self.batches))
- def quantize_weights_feature(self, value):
- result = round(value / self.weights_feature_scale)
- return self.clamp(result, self.INT8_MIN, self.INT8_MAX)
- def quantize_weights_time(self, value):
- result = round(value / self.weights_time_scale)
- return self.clamp(result, self.INT16_MIN, self.INT16_MAX)
- def quantize_state(self, value):
- result = round(value / self.state_scale)
- return self.clamp(result, self.INT16_MIN, self.INT16_MAX)
- def quantize_bias(self, value):
- result = round(value / self.bias_scale)
- return result
- def get_randomized_state_data(self, length, npfile, regenerate, minrange=None, maxrange=None):
- if not minrange:
- minrange = self.mins
- if not maxrange:
- maxrange = self.maxs
- data = []
- if not os.path.exists(npfile) or regenerate:
- regendir = os.path.dirname(npfile)
- if not os.path.exists(regendir):
- os.makedirs(regendir)
- for i in range(length):
- data.append(random.randint(self.mins, self.maxs))
- print("Saving data to {}".format(npfile))
- with open(npfile, 'w') as f:
- for listitem in data:
- f.write(str(listitem) + '\n')
- else:
- print("Loading data from {}".format(npfile))
- with open(npfile, 'r') as f:
- for line in f:
- data.append(int(line.strip()))
- return data
- def generate_data(self, input_data=None, weights=None, biases=None, time_data=None, state_data=None):
- if input_data is not None:
- input_data = tf.reshape(input_data, [self.input_sequence_length])
- else:
- input_data = self.get_randomized_data([self.input_sequence_length],
- self.inputs_table_file,
- regenerate=self.regenerate_new_input)
- self.generate_c_array("input_sequence", self.convert_tensor(input_data, self.quantize_input))
- if weights is not None:
- weights_feature_data = tf.reshape(weights, [self.number_filters, self.input_size])
- else:
- weights_feature_data = self.get_randomized_data([self.number_filters, self.input_size],
- self.kernel_table_file,
- regenerate=self.regenerate_new_weights)
- self.generate_c_array("weights_feature",
- self.convert_tensor(weights_feature_data, self.quantize_weights_feature))
- if time_data is not None:
- weights_time_data = tf.reshape(time_data, [self.number_filters, self.memory_size])
- else:
- weights_time_data = self.get_randomized_data([self.number_filters, self.memory_size],
- self.time_table_file,
- regenerate=self.regenerate_new_weights)
- self.generate_c_array("weights_time",
- self.convert_tensor(weights_time_data, self.quantize_weights_time), datatype='q15_t')
- if state_data is None:
- state_data = self.get_randomized_state_data(self.batches * self.memory_size * self.number_filters,
- self.state_table_file,
- regenerate=self.regenerate_new_weights)
- self.state_data = state_data
- state_data = tf.reshape(state_data, [self.batches, self.memory_size*self.number_filters])
- self.generate_c_array("state", self.convert_tensor(state_data, self.quantize_state), "q15_t")
- if not self.generate_bias:
- biases = [0] * self.number_units
- if biases is not None:
- biases = tf.reshape(biases, [self.number_units])
- else:
- biases = self.get_randomized_data([self.number_units],
- self.bias_table_file,
- regenerate=self.regenerate_new_weights)
- self.generate_c_array("biases", self.convert_tensor(biases, self.quantize_bias), "int32_t")
- # Generate reference output.
- svdf = None
- for i in range(self.number_inputs):
- start = i * self.input_size * self.batches
- end = i * self.input_size * self.batches + self.input_size * self.batches
- input_sequence = input_data[start:end]
- svdf = self.svdf(input_sequence, weights_feature_data, weights_time_data, biases)
- self.generate_c_array("output_ref", self.convert_tensor(svdf, self.quantize_output))
- self.write_c_config_header()
- self.write_c_header_wrapper()
- def svdf(self, indata, weights_feature, time_feature, bias=None):
- indata = tf.cast(indata, dtype=tf.dtypes.float32)
- weights_feature = tf.cast(weights_feature, dtype=tf.dtypes.float32)
- time_feature = tf.cast(time_feature, dtype=tf.dtypes.float32)
- bias = tf.cast(bias, dtype=tf.dtypes.float32)
- state_data = deque(self.state_data)
- state_data.rotate(-1)
- self.state_data = list(state_data)
- indata = tf.reshape(indata, [self.batches, 1, self.input_size])
- weights_feature = tf.reshape(weights_feature, [self.number_filters, self.input_size, 1])
- weights_feature = tf.transpose(weights_feature)
- scratch = tf.nn.conv1d(indata, weights_feature, stride=self.memory_size-1, padding=self.padding)
- out_size = self.batches * self.number_filters
- scratch = tf.reshape(scratch, [out_size])
- state_counter = self.memory_size - 1
- for i in range(out_size):
- self.state_data[state_counter] = scratch[i].numpy().ravel()[0]
- state_counter += self.memory_size
- time_feature = tf.reshape(time_feature, [self.number_filters * self.memory_size])
- scratch = []
- for b in range(self.batches):
- counter_t = 0
- counter_s = b * self.memory_size * self.number_filters
- for i in range(self.number_filters):
- dot_prod = 0
- for j in range(self.memory_size):
- dot_prod += self.state_data[counter_s] * time_feature[counter_t].numpy().ravel()[0]
- counter_t += 1
- counter_s += 1
- scratch.append(dot_prod)
- out = tf.constant(scratch, dtype=tf.dtypes.float32)
- out = tf.reshape(out, [self.number_units * self.batches, self.rank])
- out = tf.reduce_sum(out, axis=1)
- if self.generate_bias:
- out = tf.reshape(out, [self.batches, self.number_units])
- output_list = []
- for b in range(self.batches):
- output_list.append(tf.add(out[b], bias))
- outputs = tf.stack(output_list)
- out = outputs
- out = tf.clip_by_value(out, self.out_activation_min, self.out_activation_max)
- return out
- def load_all_testdatasets():
- """
- Add all new testdata sets here
- """
- type_of_test = 'conv'
- dataset = 'basic'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=1, out_ch=1, x_in=5,
- y_in=8, w_x=2, w_y=4, stride_x=1, stride_y=1, pad=False,
- randmin=1, randmax=4)
- dataset = 'stride2pad1'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=1, out_ch=1, x_in=7,
- y_in=7, w_x=3, w_y=3, stride_x=2, stride_y=2, pad=True,
- randmin=1, randmax=4)
- dataset = 'kernel1x1'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=4, out_ch=17, x_in=15,
- y_in=15, w_x=1, w_y=1, stride_x=1, stride_y=1, pad=False,
- randmin=1, randmax=4, outminrange=-126, outmaxrange=127)
- dataset = 'conv_3'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=3, out_ch=1, x_in=10, y_in=49, w_x=4,
- w_y=10, stride_x=1, stride_y=2, pad=True, randmin=-2, randmax=2,
- outminrange=-127, outmaxrange=127)
- dataset = 'conv_1_x_n_1'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=3, out_ch=3, x_in=5, y_in=5, w_x=2,
- w_y=1, stride_x=2, stride_y=1, pad=False, randmin=-2, randmax=2,
- outminrange=-127, outmaxrange=127, batches=2)
- dataset = 'conv_1_x_n_2'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=3, out_ch=1, x_in=11, y_in=11, w_x=11,
- w_y=1, stride_x=1, stride_y=1, pad=True, randmin=-2, randmax=2,
- outminrange=-127, outmaxrange=127)
- dataset = 'conv_1_x_n_3'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=1, out_ch=3, x_in=11, y_in=11, w_x=1,
- w_y=11, stride_x=1, stride_y=1, pad=True, randmin=-2, randmax=2,
- outminrange=-127, outmaxrange=127)
- dataset = 'conv_2'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=2, out_ch=4, x_in=6, y_in=3, w_x=3,
- w_y=3, stride_x=1, stride_y=1, pad=True, randmin=1, randmax=4,
- outminrange=-126, outmaxrange=127)
- dataset = 'conv_4' # batches > 2
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=3, out_ch=3, x_in=5, y_in=5, w_x=2,
- w_y=3, stride_x=2, stride_y=2, pad=False, randmin=-2, randmax=2,
- outminrange=-127, outmaxrange=127, batches=3)
- dataset = 'conv_out_activation'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=2, out_ch=2, x_in=3, y_in=3, w_x=3,
- w_y=3, stride_x=1, stride_y=1, pad=True, randmin=-5, randmax=5,
- out_activation_min=-55, out_activation_max=55)
- type_of_test = 'depthwise_conv'
- dataset = 'depthwise_2'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=3, out_ch=9, x_in=6, y_in=5, w_x=3,
- w_y=4, stride_x=2, stride_y=2, pad=True, randmin=-2, randmax=2,
- outminrange=-126, outmaxrange=127)
- dataset = 'depthwise_kernel_3x3'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=5, out_ch=5, x_in=4, y_in=5, w_x=3,
- w_y=3, stride_x=2, stride_y=2, pad=True, randmin=-2, randmax=2,
- outminrange=-126, outmaxrange=127)
- dataset = 'depthwise_eq_in_out_ch'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=6, out_ch=6, x_in=4, y_in=5, w_x=2,
- w_y=3, stride_x=1, stride_y=1, pad=True, randmin=-2, randmax=2,
- outminrange=-126, outmaxrange=127)
- dataset = 'depthwise_out_activation'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=3, out_ch=3, x_in=6, y_in=5, w_x=3,
- w_y=4, pad=False, randmin=-7, randmax=7, out_activation_min=-31,
- out_activation_max=24)
- dataset = 'depthwise_mult_batches'
- ALL_TESTDATA_SETS[dataset] = ConvSettings(dataset, type_of_test, args, in_ch=3, out_ch=3, x_in=3, y_in=5, w_x=2,
- w_y=4, stride_x=2, stride_y=2, pad=True, randmin=-2, randmax=2,
- batches=2)
- type_of_test = 'fully_connected'
- dataset = 'fully_connected'
- ALL_TESTDATA_SETS[dataset] = FullyConnectedSettings(dataset, type_of_test, args, in_ch=10, out_ch=6, x_in=2, y_in=1,
- w_x=2, w_y=1, batches=3, input_zero_point=-50,
- output_zero_point=-2)
- dataset = 'fully_connected_mve_0'
- ALL_TESTDATA_SETS[dataset] = FullyConnectedSettings(dataset, type_of_test, args, in_ch=16, out_ch=9, x_in=1, y_in=1,
- input_zero_point=-3, w_x=1, w_y=1, batches=1,
- output_zero_point=-2)
- dataset = 'fully_connected_mve_1'
- ALL_TESTDATA_SETS[dataset] = FullyConnectedSettings(dataset, type_of_test, args, in_ch=20, out_ch=4, x_in=1, y_in=1,
- input_zero_point=-1, w_x=1, w_y=1, batches=1,
- output_zero_point=3)
- dataset = 'fully_connected_null_bias_0'
- ALL_TESTDATA_SETS[dataset] = FullyConnectedSettings(dataset, type_of_test, args, in_ch=33, out_ch=5,
- input_zero_point=-1, batches=2, generate_bias=False)
- dataset = 'fully_connected_out_activation'
- ALL_TESTDATA_SETS[dataset] = FullyConnectedSettings(dataset, type_of_test, args, in_ch=10, out_ch=4, randmin=-15,
- randmax=15, input_zero_point=0, output_zero_point=0,
- out_activation_min=-105, out_activation_max=120)
- type_of_test = 'avgpool'
- dataset = 'avgpooling'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=8, x_in=22, y_in=12, stride_x=9,
- stride_y=5, w_x=6, w_y=5, pad=True)
- dataset = 'avgpooling_1'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=3, x_in=9, y_in=5, stride_x=1,
- stride_y=2, w_x=9, w_y=5, pad=False)
- dataset = 'avgpooling_2'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=5, x_in=12, y_in=1, stride_x=1,
- stride_y=2, w_x=3, w_y=1, pad=True)
- dataset = 'avgpooling_3'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=2, x_in=9, y_in=1, stride_x=2,
- stride_y=1, w_x=1, w_y=1, pad=False)
- dataset = 'avgpooling_4'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=2, x_in=1, y_in=20, stride_x=1,
- stride_y=3, w_x=1, w_y=3, pad=True)
- dataset = 'avgpooling_5'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, randmin=0, channels=1, x_in=3, y_in=3,
- stride_x=1, stride_y=1, w_x=1, w_y=3, pad=True, relu6=True)
- type_of_test = 'maxpool'
- dataset = 'maxpooling'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=8, x_in=22, y_in=12, stride_x=9,
- stride_y=5, w_x=6, w_y=5, pad=True)
- dataset = 'maxpooling_1'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=3, x_in=9, y_in=5, stride_x=1,
- stride_y=2, w_x=9, w_y=5, pad=False)
- dataset = 'maxpooling_2'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=5, x_in=12, y_in=1, stride_x=1,
- stride_y=2, w_x=3, w_y=1, pad=True)
- dataset = 'maxpooling_3'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=2, x_in=9, y_in=1, stride_x=2,
- stride_y=1, w_x=1, w_y=1, pad=False)
- dataset = 'maxpooling_4'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=2, x_in=1, y_in=20, stride_x=1,
- stride_y=3, w_x=1, w_y=3, pad=True)
- dataset = 'maxpooling_5'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=20, x_in=1, y_in=1, stride_x=1,
- stride_y=1, w_x=1, w_y=1, pad=True)
- dataset = 'maxpooling_6'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=17, x_in=1, y_in=5, stride_x=1,
- stride_y=3, w_x=3, w_y=4, pad=True)
- dataset = 'maxpooling_7'
- ALL_TESTDATA_SETS[dataset] = PoolingSettings(dataset, type_of_test, args, channels=1, x_in=4, y_in=2, stride_x=2,
- stride_y=2, w_x=2, w_y=2, pad=False, randmin=-20, randmax=-5,
- relu6=True)
- type_of_test = 'softmax'
- dataset = 'softmax'
- ALL_TESTDATA_SETS[dataset] = SoftmaxSettings(dataset, type_of_test, args, x_in=5, y_in=1)
- type_of_test = 'svdf'
- dataset = 'svdf'
- ALL_TESTDATA_SETS[dataset] = SVDFSettings(dataset, type_of_test, args, batches=2, number_inputs=2, rank=8,
- memory_size=8, input_size=3, number_units=3)
- type_of_test = 'svdf'
- dataset = 'svdf_1'
- ALL_TESTDATA_SETS[dataset] = SVDFSettings(dataset, type_of_test, args, batches=3, number_inputs=2, rank=1,
- memory_size=2, input_size=7, number_units=5)
- type_of_test = 'svdf'
- dataset = 'svdf_2'
- ALL_TESTDATA_SETS[dataset] = SVDFSettings(dataset, type_of_test, args, batches=3, number_inputs=2, rank=2,
- memory_size=2, input_size=7, number_units=5, generate_bias=False)
- type_of_test = 'svdf'
- dataset = 'svdf_3'
- ALL_TESTDATA_SETS[dataset] = SVDFSettings(dataset, type_of_test, args, batches=1, number_inputs=2, rank=1,
- memory_size=2, input_size=20, number_units=12, generate_bias=False)
- if __name__ == '__main__':
- if version.parse(tf.__version__) < REQUIRED_MINIMUM_TENSORFLOW_VERSION:
- print("Unsupported tensorflow version, ", version.parse(tf.__version__))
- sys.exit(0)
- args = parse_args()
- testdataset = args.dataset
- test_type = args.testtype
- load_all_testdatasets()
- if (args.run_all_testsets):
- for testset_name, testset_generator in ALL_TESTDATA_SETS.items():
- print("Generating testset {}..".format(testset_name))
- testset_generator.generate_data()
- print()
- # Check that all testsets have been loaded.
- found_test_data_sets = []
- directory = 'TestCases/TestData'
- for dir in next(os.walk(directory))[1]:
- found_test_data_sets.append(dir)
- for testset_name in found_test_data_sets:
- if testset_name not in ALL_TESTDATA_SETS:
- print("WARNING: Testset {} in {} was not loaded".format(testset_name, directory))
- else:
- try:
- generator = ALL_TESTDATA_SETS[testdataset]
- except KeyError:
- print("WARNING: testset {} not in testset list".format(testdataset))
- if args.testtype == 'conv' or args.testtype == 'depthwise_conv':
- generator = ConvSettings(testdataset, test_type, args)
- elif args.testtype == 'fully_connected':
- generator = FullyConnectedSettings(testdataset, test_type, args)
- elif args.testtype == 'avgpool' or args.testtype == 'maxpool':
- generator = PoolingSettings(testdataset, test_type, args)
- generator.generate_data()
|