| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_cmplx_mult_f32.c
- * Description: Floating-point matrix multiplication
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "dsp/matrix_functions.h"
- /**
- @ingroup groupMatrix
- */
- /**
- @defgroup CmplxMatrixMult Complex Matrix Multiplication
- Complex Matrix multiplication is only defined if the number of columns of the
- first matrix equals the number of rows of the second matrix.
- Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
- in an <code>M x P</code> matrix.
- @par
- When matrix size checking is enabled, the functions check:
- - that the inner dimensions of <code>pSrcA</code> and <code>pSrcB</code> are equal;
- - that the size of the output matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
- */
- /**
- @addtogroup CmplxMatrixMult
- @{
- */
- /**
- @brief Floating-point Complex matrix multiplication.
- @param[in] pSrcA points to first input complex matrix structure
- @param[in] pSrcB points to second input complex matrix structure
- @param[out] pDst points to output complex matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- */
- #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
- #include "arm_helium_utils.h"
- #define MATRIX_DIM2 2
- #define MATRIX_DIM3 3
- #define MATRIX_DIM4 4
- __STATIC_INLINE arm_status arm_mat_cmplx_mult_f32_2x2_mve(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs0;
- float32_t *pInA0 = pInA;
- float32_t *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM2;
- f32x4_t acc0, acc1;
- f32x4_t vecB, vecA;
- static const uint32_t offsetB0[4] = { 0, 1,
- MATRIX_DIM2 * CMPLX_DIM, MATRIX_DIM2 * CMPLX_DIM + 1
- };
- vecColBOffs0 = vldrwq_u32((uint32_t const *) offsetB0);
- pInB = (float32_t const *)pSrcB->pData;
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 1] = acc1[1] + acc1[3];
- pOut += CMPLX_DIM;
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 1] = acc1[1] + acc1[3];
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
- }
- __STATIC_INLINE arm_status arm_mat_cmplx_mult_f32_3x3_mve(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs0, vecColBOffs1;
- float32_t *pInA0 = pInA;
- float32_t *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM3;
- float32_t *pInA2 = pInA1 + CMPLX_DIM * MATRIX_DIM3;
- f32x4_t acc0, acc1, acc2;
- f32x4_t vecB, vecA;
- /* enable predication to disable upper half complex vector element */
- mve_pred16_t p0 = vctp32q(CMPLX_DIM);
- static const uint32_t offsetB0[4] = { 0, 1,
- MATRIX_DIM3 * CMPLX_DIM, MATRIX_DIM3 * CMPLX_DIM + 1
- };
- static const uint32_t offsetB1[4] = { 2 * MATRIX_DIM3 * CMPLX_DIM, 2 * MATRIX_DIM3 * CMPLX_DIM + 1,
- INACTIVELANE, INACTIVELANE
- };
- vecColBOffs0 = vldrwq_u32((uint32_t const *) offsetB0);
- vecColBOffs1 = vldrwq_u32((uint32_t const *) offsetB1);
- pInB = (float32_t const *)pSrcB->pData;
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecColBOffs1, p0);
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc2[1] + acc2[3];
- pOut += CMPLX_DIM;
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecColBOffs1, p0);
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc2[1] + acc2[3];
- pOut += CMPLX_DIM;
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecColBOffs1, p0);
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc2[1] + acc2[3];
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
- }
- __STATIC_INLINE arm_status arm_mat_cmplx_mult_f32_4x4_mve(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs0, vecColBOffs1;
- float32_t *pInA0 = pInA;
- float32_t *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM4;
- float32_t *pInA2 = pInA1 + CMPLX_DIM * MATRIX_DIM4;
- float32_t *pInA3 = pInA2 + CMPLX_DIM * MATRIX_DIM4;
- f32x4_t acc0, acc1, acc2, acc3;
- f32x4_t vecB, vecA;
- static const uint32_t offsetB0[4] = { 0, 1,
- MATRIX_DIM4 * CMPLX_DIM, MATRIX_DIM4 * CMPLX_DIM + 1
- };
- static const uint32_t offsetB1[4] = { 2 * MATRIX_DIM4 * CMPLX_DIM, 2 * MATRIX_DIM4 * CMPLX_DIM + 1,
- 3 * MATRIX_DIM4 * CMPLX_DIM, 3 * MATRIX_DIM4 * CMPLX_DIM + 1
- };
- vecColBOffs0 = vldrwq_u32((uint32_t const *) offsetB0);
- vecColBOffs1 = vldrwq_u32((uint32_t const *) offsetB1);
- pInB = (float32_t const *)pSrcB->pData;
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vldrwq_f32(pInA3);
- acc3 = vcmulq(vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vldrwq_f32(&pInA3[4]);
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc2[1] + acc2[3];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc3[0] + acc3[2];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc3[1] + acc3[3];
- pOut += CMPLX_DIM;
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vldrwq_f32(pInA3);
- acc3 = vcmulq(vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vldrwq_f32(&pInA3[4]);
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc2[1] + acc2[3];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc3[0] + acc3[2];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc3[1] + acc3[3];
- pOut += CMPLX_DIM;
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vldrwq_f32(pInA3);
- acc3 = vcmulq(vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vldrwq_f32(&pInA3[4]);
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc2[1] + acc2[3];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc3[0] + acc3[2];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc3[1] + acc3[3];
- pOut += CMPLX_DIM;
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vldrwq_f32(pInA3);
- acc3 = vcmulq(vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vldrwq_f32(&pInA3[4]);
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc2[1] + acc2[3];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc3[0] + acc3[2];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc3[1] + acc3[3];
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
- }
- arm_status arm_mat_cmplx_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t const *pInB = (float32_t const *) pSrcB->pData; /* input data matrix pointer B */
- float32_t const *pInA = (float32_t const *) pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint16_t col, i = 0U, row = numRowsA; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- uint32x4_t vecOffs, vecColBOffs;
- uint32_t blkCnt, rowCnt; /* loop counters */
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*
- * small squared matrix specialized routines
- */
- if (numRowsA == numColsB && numColsB == numColsA)
- {
- if (numRowsA == 1)
- {
- pOut[0] = pInA[0] * pInB[0] - pInA[1] * pInB[1];
- pOut[1] = pInA[0] * pInB[1] + pInA[1] * pInB[0];
- return (ARM_MATH_SUCCESS);
- }
- else if (numRowsA == 2)
- return arm_mat_cmplx_mult_f32_2x2_mve(pSrcA, pSrcB, pDst);
- else if (numRowsA == 3)
- return arm_mat_cmplx_mult_f32_3x3_mve(pSrcA, pSrcB, pDst);
- else if (numRowsA == 4)
- return arm_mat_cmplx_mult_f32_4x4_mve(pSrcA, pSrcB, pDst);
- }
- vecColBOffs[0] = 0;
- vecColBOffs[1] = 1;
- vecColBOffs[2] = numColsB * CMPLX_DIM;
- vecColBOffs[3] = (numColsB * CMPLX_DIM) + 1;
- /*
- * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
- */
- /*
- * row loop
- */
- rowCnt = row >> 2;
- while (rowCnt > 0u)
- {
- /*
- * Output pointer is set to starting address of the row being processed
- */
- px = pOut + i * CMPLX_DIM;
- i = i + 4 * numColsB;
- /*
- * For every row wise process, the column loop counter is to be initiated
- */
- col = numColsB;
- /*
- * For every row wise process, the pInB pointer is set
- * to the starting address of the pSrcB data
- */
- pInB = (float32_t const *) pSrcB->pData;
- /*
- * column loop
- */
- while (col > 0u)
- {
- /*
- * generate 4 columns elements
- */
- /*
- * Matrix A columns number of MAC operations are to be performed
- */
- float32_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec;
- float32_t const *pInA0 = pInA;
- float32_t const *pInA1 = pInA0 + numColsA * CMPLX_DIM;
- float32_t const *pInA2 = pInA1 + numColsA * CMPLX_DIM;
- float32_t const *pInA3 = pInA2 + numColsA * CMPLX_DIM;
- f32x4_t acc0, acc1, acc2, acc3;
- acc0 = vdupq_n_f32(0.0f);
- acc1 = vdupq_n_f32(0.0f);
- acc2 = vdupq_n_f32(0.0f);
- acc3 = vdupq_n_f32(0.0f);
- pSrcA0Vec = (float32_t const *) pInA0;
- pSrcA1Vec = (float32_t const *) pInA1;
- pSrcA2Vec = (float32_t const *) pInA2;
- pSrcA3Vec = (float32_t const *) pInA3;
- vecOffs = vecColBOffs;
- /*
- * process 1 x 4 block output
- */
- blkCnt = (numColsA * CMPLX_DIM) >> 2;
- while (blkCnt > 0U)
- {
- f32x4_t vecB, vecA;
- vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
- /*
- * move Matrix B read offsets, 4 rows down
- */
- vecOffs = vecOffs + (uint32_t) (numColsB * 2 * CMPLX_DIM);
- vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 4;
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 4;
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 4;
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
- blkCnt--;
- }
-
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = (numColsA * CMPLX_DIM) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- f32x4_t vecB, vecA;
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
- /*
- * move Matrix B read offsets, 4 rows down
- */
- vecOffs = vecOffs + (uint32_t) (numColsB * 2 * CMPLX_DIM);
- vecA = vld1q(pSrcA0Vec);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vld1q(pSrcA1Vec);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vld1q(pSrcA2Vec);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vld1q(pSrcA3Vec);
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
- }
- px[0 * CMPLX_DIM * numColsB + 0] = acc0[0] + acc0[2];
- px[0 * CMPLX_DIM * numColsB + 1] = acc0[1] + acc0[3];
- px[1 * CMPLX_DIM * numColsB + 0] = acc1[0] + acc1[2];
- px[1 * CMPLX_DIM * numColsB + 1] = acc1[1] + acc1[3];
- px[2 * CMPLX_DIM * numColsB + 0] = acc2[0] + acc2[2];
- px[2 * CMPLX_DIM * numColsB + 1] = acc2[1] + acc2[3];
- px[3 * CMPLX_DIM * numColsB + 0] = acc3[0] + acc3[2];
- px[3 * CMPLX_DIM * numColsB + 1] = acc3[1] + acc3[3];
- px += CMPLX_DIM;
- /*
- * Decrement the column loop counter
- */
- col--;
- /*
- * Update the pointer pInB to point to the starting address of the next column
- */
- pInB = (float32_t const *) pSrcB->pData + (numColsB - col) * CMPLX_DIM;
- }
- /*
- * Update the pointer pInA to point to the starting address of the next row
- */
- pInA += (numColsA * 4) * CMPLX_DIM;
- /*
- * Decrement the row loop counter
- */
- rowCnt --;
- }
- rowCnt = row & 3;
- while (rowCnt > 0u)
- {
- /*
- * Output pointer is set to starting address of the row being processed
- */
- px = pOut + i * CMPLX_DIM;
- i = i + numColsB;
- /*
- * For every row wise process, the column loop counter is to be initiated
- */
- col = numColsB;
- /*
- * For every row wise process, the pInB pointer is set
- * to the starting address of the pSrcB data
- */
- pInB = (float32_t const *) pSrcB->pData;
- /*
- * column loop
- */
- while (col > 0u)
- {
- /*
- * generate 4 columns elements
- */
- /*
- * Matrix A columns number of MAC operations are to be performed
- */
- float32_t const *pSrcA0Vec;
- float32_t const *pInA0 = pInA;
- f32x4_t acc0;
- acc0 = vdupq_n_f32(0.0f);
- pSrcA0Vec = (float32_t const *) pInA0;
-
- vecOffs = vecColBOffs;
- /*
- * process 1 x 4 block output
- */
- blkCnt = (numColsA * CMPLX_DIM) >> 2;
- while (blkCnt > 0U)
- {
- f32x4_t vecB, vecA;
- vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
- /*
- * move Matrix B read offsets, 4 rows down
- */
- vecOffs = vecOffs + (uint32_t) (numColsB * 2 * CMPLX_DIM);
- vecA = vld1q(pSrcA0Vec);
- pSrcA0Vec += 4;
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = (numColsA * CMPLX_DIM) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- f32x4_t vecB, vecA;
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
-
- vecA = vld1q(pSrcA0Vec);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- }
- px[0] = acc0[0] + acc0[2];
- px[1] = acc0[1] + acc0[3];
-
- px += CMPLX_DIM;
- /*
- * Decrement the column loop counter
- */
- col--;
- /*
- * Update the pointer pInB to point to the starting address of the next column
- */
- pInB = (float32_t const *) pSrcB->pData + (numColsB - col) * CMPLX_DIM;
- }
- /*
- * Update the pointer pInA to point to the starting address of the next row
- */
- pInA += numColsA * CMPLX_DIM;
- rowCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- #else
- #if defined(ARM_MATH_NEON)
- arm_status arm_mat_cmplx_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- float32_t sumReal1, sumImag1; /* accumulator */
- float32_t a1, a1B,b1, b1B, c1, d1;
- float32_t sumReal2, sumImag2; /* accumulator */
- float32x4x2_t a0V, a1V;
- float32x4_t accR0,accI0, accR1,accI1,tempR, tempI;
- float32x2_t accum = vdup_n_f32(0);
- float32_t *pIn1B = pSrcA->pData;
- uint16_t col, i = 0U, j, rowCnt, row = numRowsA, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- float32_t sumReal1B, sumImag1B;
- float32_t sumReal2B, sumImag2B;
- float32_t *pxB;
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- rowCnt = row >> 1;
- /* Row loop */
- while (rowCnt > 0U)
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + 2 * i;
- pxB = px + 2 * numColsB;
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
- j = 0U;
- /* Column loop */
- while (col > 0U)
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal1 = 0.0f;
- sumImag1 = 0.0f;
- sumReal1B = 0.0f;
- sumImag1B = 0.0f;
- sumReal2 = 0.0f;
- sumImag2 = 0.0f;
- sumReal2B = 0.0f;
- sumImag2B = 0.0f;
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pIn1 = pInA;
- pIn1B = pIn1 + 2*numColsA;
- accR0 = vdupq_n_f32(0.0);
- accI0 = vdupq_n_f32(0.0);
- accR1 = vdupq_n_f32(0.0);
- accI1 = vdupq_n_f32(0.0);
- /* Compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2;
- /* Matrix multiplication */
- while (colCnt > 0U)
- {
- /* Reading real part of complex matrix A */
- a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
- a1V = vld2q_f32(pIn1B); // load & separate real/imag pSrcA (de-interleave 2)
- pIn1 += 8;
- pIn1B += 8;
- tempR = vsetq_lane_f32(*pIn2,tempR,0);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,0);
- pIn2 += 2 * numColsB;
- tempR = vsetq_lane_f32(*pIn2,tempR,1);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,1);
- pIn2 += 2 * numColsB;
- tempR = vsetq_lane_f32(*pIn2,tempR,2);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,2);
- pIn2 += 2 * numColsB;
- tempR = vsetq_lane_f32(*pIn2,tempR,3);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,3);
- pIn2 += 2 * numColsB;
- accR0 = vmlaq_f32(accR0,a0V.val[0],tempR);
- accR0 = vmlsq_f32(accR0,a0V.val[1],tempI);
- accI0 = vmlaq_f32(accI0,a0V.val[1],tempR);
- accI0 = vmlaq_f32(accI0,a0V.val[0],tempI);
- accR1 = vmlaq_f32(accR1,a1V.val[0],tempR);
- accR1 = vmlsq_f32(accR1,a1V.val[1],tempI);
- accI1 = vmlaq_f32(accI1,a1V.val[1],tempR);
- accI1 = vmlaq_f32(accI1,a1V.val[0],tempI);
- /* Decrement the loop count */
- colCnt--;
- }
- accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0));
- sumReal1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
- accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0));
- sumImag1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
- accum = vpadd_f32(vget_low_f32(accR1), vget_high_f32(accR1));
- sumReal1B += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
- accum = vpadd_f32(vget_low_f32(accI1), vget_high_f32(accI1));
- sumImag1B += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA & 3;
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- a1 = *pIn1;
- a1B = *pIn1B;
- c1 = *pIn2;
- b1 = *(pIn1 + 1U);
- b1B = *(pIn1B + 1U);
- d1 = *(pIn2 + 1U);
- sumReal1 += a1 * c1;
- sumImag1 += b1 * c1;
- sumReal1B += a1B * c1;
- sumImag1B += b1B * c1;
- pIn1 += 2U;
- pIn1B += 2U;
- pIn2 += 2 * numColsB;
- sumReal2 -= b1 * d1;
- sumImag2 += a1 * d1;
- sumReal2B -= b1B * d1;
- sumImag2B += a1B * d1;
- /* Decrement the loop counter */
- colCnt--;
- }
- sumReal1 += sumReal2;
- sumImag1 += sumImag2;
- sumReal1B += sumReal2B;
- sumImag1B += sumImag2B;
- /* Store the result in the destination buffer */
- *px++ = sumReal1;
- *px++ = sumImag1;
- *pxB++ = sumReal1B;
- *pxB++ = sumImag1B;
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = pSrcB->pData + 2U * j;
- /* Decrement the column loop counter */
- col--;
- }
- /* Update the pointer pInA to point to the starting address of the next 2 row */
- i = i + 2*numColsB;
- pInA = pInA + 4 * numColsA;
- /* Decrement the row loop counter */
- rowCnt--;
- }
- rowCnt = row & 1;
- while (rowCnt > 0U)
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + 2 * i;
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
- j = 0U;
- /* Column loop */
- while (col > 0U)
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal1 = 0.0f;
- sumImag1 = 0.0f;
- sumReal2 = 0.0f;
- sumImag2 = 0.0f;
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pIn1 = pInA;
- accR0 = vdupq_n_f32(0.0);
- accI0 = vdupq_n_f32(0.0);
- /* Compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2;
- /* Matrix multiplication */
- while (colCnt > 0U)
- {
- /* Reading real part of complex matrix A */
- a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
- pIn1 += 8;
- tempR = vsetq_lane_f32(*pIn2,tempR,0);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,0);
- pIn2 += 2 * numColsB;
- tempR = vsetq_lane_f32(*pIn2,tempR,1);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,1);
- pIn2 += 2 * numColsB;
- tempR = vsetq_lane_f32(*pIn2,tempR,2);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,2);
- pIn2 += 2 * numColsB;
- tempR = vsetq_lane_f32(*pIn2,tempR,3);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,3);
- pIn2 += 2 * numColsB;
- accR0 = vmlaq_f32(accR0,a0V.val[0],tempR);
- accR0 = vmlsq_f32(accR0,a0V.val[1],tempI);
- accI0 = vmlaq_f32(accI0,a0V.val[1],tempR);
- accI0 = vmlaq_f32(accI0,a0V.val[0],tempI);
- /* Decrement the loop count */
- colCnt--;
- }
- accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0));
- sumReal1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
- accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0));
- sumImag1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA & 3;
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- a1 = *pIn1;
- c1 = *pIn2;
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
- sumReal1 += a1 * c1;
- sumImag1 += b1 * c1;
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- sumReal2 -= b1 * d1;
- sumImag2 += a1 * d1;
- /* Decrement the loop counter */
- colCnt--;
- }
- sumReal1 += sumReal2;
- sumImag1 += sumImag2;
- /* Store the result in the destination buffer */
- *px++ = sumReal1;
- *px++ = sumImag1;
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = pSrcB->pData + 2U * j;
- /* Decrement the column loop counter */
- col--;
- }
- /* Update the pointer pInA to point to the starting address of the next row */
- i = i + numColsB;
- pInA = pInA + 2 * numColsA;
- /* Decrement the row loop counter */
- rowCnt--;
- }
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- #else
- arm_status arm_mat_cmplx_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* Output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- float32_t sumReal, sumImag; /* Accumulator */
- float32_t a1, b1, c1, d1;
- uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- #if defined (ARM_MATH_LOOPUNROLL)
- float32_t a0, b0, c0, d0;
- #endif
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + 2 * i;
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
- j = 0U;
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal = 0.0f;
- sumImag = 0.0f;
- /* Initiate pointer pIn1 to point to starting address of column being processed */
- pIn1 = pInA;
- #if defined (ARM_MATH_LOOPUNROLL)
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2U;
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* Reading real part of complex matrix A */
- a0 = *pIn1;
- /* Reading real part of complex matrix B */
- c0 = *pIn2;
- /* Reading imaginary part of complex matrix A */
- b0 = *(pIn1 + 1U);
- /* Reading imaginary part of complex matrix B */
- d0 = *(pIn2 + 1U);
- /* Multiply and Accumlates */
- sumReal += a0 * c0;
- sumImag += b0 * c0;
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- /* Multiply and Accumlates */
- sumReal -= b0 * d0;
- sumImag += a0 * d0;
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- /* read real and imag values from pSrcA and pSrcB buffer */
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
- /* Multiply and Accumlates */
- sumReal += a1 * c1;
- sumImag += b1 * c1;
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- /* Multiply and Accumlates */
- sumReal -= b1 * d1;
- sumImag += a1 * d1;
- a0 = *(pIn1 );
- c0 = *(pIn2 );
- b0 = *(pIn1 + 1U);
- d0 = *(pIn2 + 1U);
- /* Multiply and Accumlates */
- sumReal += a0 * c0;
- sumImag += b0 * c0;
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- /* Multiply and Accumlates */
- sumReal -= b0 * d0;
- sumImag += a0 * d0;
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
- /* Multiply and Accumlates */
- sumReal += a1 * c1;
- sumImag += b1 * c1;
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- /* Multiply and Accumlates */
- sumReal -= b1 * d1;
- sumImag += a1 * d1;
- /* Decrement loop count */
- colCnt--;
- }
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA % 0x4U;
- #else
- /* Initialize blkCnt with number of samples */
- colCnt = numColsA;
- #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
- /* Multiply and Accumlates */
- sumReal += a1 * c1;
- sumImag += b1 * c1;
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- /* Multiply and Accumlates */
- sumReal -= b1 * d1;
- sumImag += a1 * d1;
- /* Decrement loop counter */
- colCnt--;
- }
- /* Store result in destination buffer */
- *px++ = sumReal;
- *px++ = sumImag;
- /* Update pointer pIn2 to point to starting address of next column */
- j++;
- pIn2 = pSrcB->pData + 2U * j;
- /* Decrement column loop counter */
- col--;
- } while (col > 0U);
- /* Update pointer pInA to point to starting address of next row */
- i = i + numColsB;
- pInA = pInA + 2 * numColsA;
- /* Decrement row loop counter */
- row--;
- } while (row > 0U);
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- #endif /* #if defined(ARM_MATH_NEON) */
- #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
- /**
- @} end of MatrixMult group
- */
|