UnaryTestsF32.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856
  1. #include "UnaryTestsF32.h"
  2. #include "Error.h"
  3. #define SNR_THRESHOLD 120
  4. /*
  5. Reference patterns are generated with
  6. a double precision computation.
  7. */
  8. #define REL_ERROR (1.0e-5)
  9. #define ABS_ERROR (1.0e-5)
  10. /*
  11. Comparisons for inverse
  12. */
  13. /* Not very accurate for big matrix.
  14. But big matrix needed for checking the vectorized code */
  15. #define SNR_THRESHOLD_INV 67
  16. #define REL_ERROR_INV (1.0e-3)
  17. #define ABS_ERROR_INV (1.0e-3)
  18. /*
  19. Comparison for Cholesky
  20. */
  21. #define SNR_THRESHOLD_CHOL 92
  22. #define REL_ERROR_CHOL (1.0e-5)
  23. #define ABS_ERROR_CHOL (5.0e-4)
  24. /* LDLT comparison */
  25. #define REL_ERROR_LDLT (1e-5)
  26. #define ABS_ERROR_LDLT (1e-5)
  27. #define REL_ERROR_LDLT_SPDO (1e-5)
  28. #define ABS_ERROR_LDLT_SDPO (2e-1)
  29. /* Upper bound of maximum matrix dimension used by Python */
  30. #define MAXMATRIXDIM 40
  31. #define LOADDATA2() \
  32. const float32_t *inp1=input1.ptr(); \
  33. const float32_t *inp2=input2.ptr(); \
  34. \
  35. float32_t *ap=a.ptr(); \
  36. float32_t *bp=b.ptr(); \
  37. \
  38. float32_t *outp=output.ptr(); \
  39. int16_t *dimsp = dims.ptr(); \
  40. int nbMatrixes = dims.nbSamples() >> 1;\
  41. int rows,columns; \
  42. int i;
  43. #define LOADDATA1() \
  44. const float32_t *inp1=input1.ptr(); \
  45. \
  46. float32_t *ap=a.ptr(); \
  47. \
  48. float32_t *outp=output.ptr(); \
  49. int16_t *dimsp = dims.ptr(); \
  50. int nbMatrixes = dims.nbSamples() >> 1;\
  51. int rows,columns; \
  52. int i;
  53. #define PREPAREDATA2() \
  54. in1.numRows=rows; \
  55. in1.numCols=columns; \
  56. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  57. in1.pData = ap; \
  58. \
  59. in2.numRows=rows; \
  60. in2.numCols=columns; \
  61. memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\
  62. in2.pData = bp; \
  63. \
  64. out.numRows=rows; \
  65. out.numCols=columns; \
  66. out.pData = outp;
  67. #define PREPAREDATA1(TRANSPOSED) \
  68. in1.numRows=rows; \
  69. in1.numCols=columns; \
  70. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  71. in1.pData = ap; \
  72. \
  73. if (TRANSPOSED) \
  74. { \
  75. out.numRows=columns; \
  76. out.numCols=rows; \
  77. } \
  78. else \
  79. { \
  80. out.numRows=rows; \
  81. out.numCols=columns; \
  82. } \
  83. out.pData = outp;
  84. #define PREPAREDATA1C(TRANSPOSED) \
  85. in1.numRows=rows; \
  86. in1.numCols=columns; \
  87. memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*columns);\
  88. in1.pData = ap; \
  89. \
  90. if (TRANSPOSED) \
  91. { \
  92. out.numRows=columns; \
  93. out.numCols=rows; \
  94. } \
  95. else \
  96. { \
  97. out.numRows=rows; \
  98. out.numCols=columns; \
  99. } \
  100. out.pData = outp;
  101. #define LOADVECDATA2() \
  102. const float32_t *inp1=input1.ptr(); \
  103. const float32_t *inp2=input2.ptr(); \
  104. \
  105. float32_t *ap=a.ptr(); \
  106. float32_t *bp=b.ptr(); \
  107. \
  108. float32_t *outp=output.ptr(); \
  109. int16_t *dimsp = dims.ptr(); \
  110. int nbMatrixes = dims.nbSamples() / 2;\
  111. int rows,internal; \
  112. int i;
  113. #define PREPAREVECDATA2() \
  114. in1.numRows=rows; \
  115. in1.numCols=internal; \
  116. memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*internal);\
  117. in1.pData = ap; \
  118. \
  119. memcpy((void*)bp,(const void*)inp2,2*sizeof(float32_t)*internal);
  120. #define PREPAREDATALL1() \
  121. in1.numRows=rows; \
  122. in1.numCols=columns; \
  123. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  124. in1.pData = ap; \
  125. \
  126. outll.numRows=rows; \
  127. outll.numCols=columns; \
  128. \
  129. outll.pData = outllp;
  130. #define SWAP_ROWS(A,i,j) \
  131. for(int w=0;w < n; w++) \
  132. { \
  133. float64_t tmp; \
  134. tmp = A[i*n + w]; \
  135. A[i*n + w] = A[j*n + w];\
  136. A[j*n + w] = tmp; \
  137. }
  138. void UnaryTestsF32::test_mat_vec_mult_f32()
  139. {
  140. LOADVECDATA2();
  141. for(i=0;i < nbMatrixes ; i ++)
  142. {
  143. rows = *dimsp++;
  144. internal = *dimsp++;
  145. PREPAREVECDATA2();
  146. arm_mat_vec_mult_f32(&this->in1, bp, outp);
  147. outp += rows ;
  148. }
  149. ASSERT_EMPTY_TAIL(output);
  150. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  151. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  152. }
  153. void UnaryTestsF32::test_mat_add_f32()
  154. {
  155. LOADDATA2();
  156. arm_status status;
  157. for(i=0;i < nbMatrixes ; i ++)
  158. {
  159. rows = *dimsp++;
  160. columns = *dimsp++;
  161. PREPAREDATA2();
  162. status=arm_mat_add_f32(&this->in1,&this->in2,&this->out);
  163. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  164. outp += (rows * columns);
  165. }
  166. ASSERT_EMPTY_TAIL(output);
  167. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  168. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  169. }
  170. void UnaryTestsF32::test_mat_sub_f32()
  171. {
  172. LOADDATA2();
  173. arm_status status;
  174. for(i=0;i < nbMatrixes ; i ++)
  175. {
  176. rows = *dimsp++;
  177. columns = *dimsp++;
  178. PREPAREDATA2();
  179. status=arm_mat_sub_f32(&this->in1,&this->in2,&this->out);
  180. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  181. outp += (rows * columns);
  182. }
  183. ASSERT_EMPTY_TAIL(output);
  184. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  185. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  186. }
  187. void UnaryTestsF32::test_mat_scale_f32()
  188. {
  189. LOADDATA1();
  190. arm_status status;
  191. for(i=0;i < nbMatrixes ; i ++)
  192. {
  193. rows = *dimsp++;
  194. columns = *dimsp++;
  195. PREPAREDATA1(false);
  196. status=arm_mat_scale_f32(&this->in1,0.5f,&this->out);
  197. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  198. outp += (rows * columns);
  199. }
  200. ASSERT_EMPTY_TAIL(output);
  201. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  202. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  203. }
  204. void UnaryTestsF32::test_mat_trans_f32()
  205. {
  206. LOADDATA1();
  207. arm_status status;
  208. for(i=0;i < nbMatrixes ; i ++)
  209. {
  210. rows = *dimsp++;
  211. columns = *dimsp++;
  212. PREPAREDATA1(true);
  213. status=arm_mat_trans_f32(&this->in1,&this->out);
  214. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  215. outp += (rows * columns);
  216. }
  217. ASSERT_EMPTY_TAIL(output);
  218. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  219. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  220. }
  221. void UnaryTestsF32::test_mat_cmplx_trans_f32()
  222. {
  223. LOADDATA1();
  224. arm_status status;
  225. for(i=0;i < nbMatrixes ; i ++)
  226. {
  227. rows = *dimsp++;
  228. columns = *dimsp++;
  229. PREPAREDATA1C(true);
  230. status=arm_mat_cmplx_trans_f32(&this->in1,&this->out);
  231. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  232. outp += 2*(rows * columns);
  233. }
  234. ASSERT_EMPTY_TAIL(output);
  235. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  236. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  237. }
  238. static void refInnerTail(float32_t *b)
  239. {
  240. b[0] = 1.0f;
  241. b[1] = -2.0f;
  242. b[2] = 3.0f;
  243. b[3] = -4.0f;
  244. }
  245. static void checkInnerTail(float32_t *b)
  246. {
  247. ASSERT_TRUE(b[0] == 1.0f);
  248. ASSERT_TRUE(b[1] == -2.0f);
  249. ASSERT_TRUE(b[2] == 3.0f);
  250. ASSERT_TRUE(b[3] == -4.0f);
  251. }
  252. void UnaryTestsF32::test_mat_inverse_f32()
  253. {
  254. const float32_t *inp1=input1.ptr();
  255. float32_t *ap=a.ptr();
  256. float32_t *outp=output.ptr();
  257. int16_t *dimsp = dims.ptr();
  258. int nbMatrixes = dims.nbSamples();
  259. int rows,columns;
  260. int i;
  261. arm_status status;
  262. for(i=0;i < nbMatrixes ; i ++)
  263. {
  264. rows = *dimsp++;
  265. columns = rows;
  266. PREPAREDATA1(false);
  267. refInnerTail(outp+(rows * columns));
  268. status=arm_mat_inverse_f32(&this->in1,&this->out);
  269. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  270. outp += (rows * columns);
  271. inp1 += (rows * columns);
  272. checkInnerTail(outp);
  273. }
  274. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_INV);
  275. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR_INV,REL_ERROR_INV);
  276. }
  277. void UnaryTestsF32::test_mat_cholesky_dpo_f32()
  278. {
  279. float32_t *ap=a.ptr();
  280. const float32_t *inp1=input1.ptr();
  281. float32_t *outp=output.ptr();
  282. int16_t *dimsp = dims.ptr();
  283. int nbMatrixes = dims.nbSamples();
  284. int rows,columns;
  285. int i;
  286. arm_status status;
  287. for(i=0;i < nbMatrixes ; i ++)
  288. {
  289. rows = *dimsp++;
  290. columns = rows;
  291. PREPAREDATA1(false);
  292. status=arm_mat_cholesky_f32(&this->in1,&this->out);
  293. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  294. outp += (rows * columns);
  295. inp1 += (rows * columns);
  296. }
  297. ASSERT_EMPTY_TAIL(output);
  298. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_CHOL);
  299. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL);
  300. }
  301. void UnaryTestsF32::test_solve_upper_triangular_f32()
  302. {
  303. float32_t *ap=a.ptr();
  304. const float32_t *inp1=input1.ptr();
  305. float32_t *bp=b.ptr();
  306. const float32_t *inp2=input2.ptr();
  307. float32_t *outp=output.ptr();
  308. int16_t *dimsp = dims.ptr();
  309. int nbMatrixes = dims.nbSamples();
  310. int rows,columns;
  311. int i;
  312. arm_status status;
  313. for(i=0;i < nbMatrixes ; i ++)
  314. {
  315. rows = *dimsp++;
  316. columns = rows;
  317. PREPAREDATA2();
  318. status=arm_mat_solve_upper_triangular_f32(&this->in1,&this->in2,&this->out);
  319. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  320. outp += (rows * columns);
  321. inp1 += (rows * columns);
  322. inp2 += (rows * columns);
  323. }
  324. ASSERT_EMPTY_TAIL(output);
  325. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  326. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  327. }
  328. void UnaryTestsF32::test_solve_lower_triangular_f32()
  329. {
  330. float32_t *ap=a.ptr();
  331. const float32_t *inp1=input1.ptr();
  332. float32_t *bp=b.ptr();
  333. const float32_t *inp2=input2.ptr();
  334. float32_t *outp=output.ptr();
  335. int16_t *dimsp = dims.ptr();
  336. int nbMatrixes = dims.nbSamples();
  337. int rows,columns;
  338. int i;
  339. arm_status status;
  340. for(i=0;i < nbMatrixes ; i ++)
  341. {
  342. rows = *dimsp++;
  343. columns = rows;
  344. PREPAREDATA2();
  345. status=arm_mat_solve_lower_triangular_f32(&this->in1,&this->in2,&this->out);
  346. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  347. outp += (rows * columns);
  348. inp1 += (rows * columns);
  349. inp2 += (rows * columns);
  350. }
  351. ASSERT_EMPTY_TAIL(output);
  352. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  353. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  354. }
  355. static void trans_f64(const float64_t *src, float64_t *dst, int n)
  356. {
  357. for(int r=0; r<n ; r++)
  358. {
  359. for(int c=0; c<n ; c++)
  360. {
  361. dst[c*n+r] = src[r*n+c];
  362. }
  363. }
  364. }
  365. static void trans_f32_f64(const float32_t *src, float64_t *dst, int n)
  366. {
  367. for(int r=0; r<n ; r++)
  368. {
  369. for(int c=0; c<n ; c++)
  370. {
  371. dst[c*n+r] = (float64_t)src[r*n+c];
  372. }
  373. }
  374. }
  375. static void mult_f32_f64(const float32_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  376. {
  377. for(int r=0; r<n ; r++)
  378. {
  379. for(int c=0; c<n ; c++)
  380. {
  381. float64_t sum=0.0;
  382. for(int k=0; k < n ; k++)
  383. {
  384. sum += (float64_t)srcA[r*n+k] * srcB[k*n+c];
  385. }
  386. dst[r*n+c] = sum;
  387. }
  388. }
  389. }
  390. static void mult_f64_f64(const float64_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  391. {
  392. for(int r=0; r<n ; r++)
  393. {
  394. for(int c=0; c<n ; c++)
  395. {
  396. float64_t sum=0.0;
  397. for(int k=0; k < n ; k++)
  398. {
  399. sum += srcA[r*n+k] * srcB[k*n+c];
  400. }
  401. dst[r*n+c] = sum;
  402. }
  403. }
  404. }
  405. void UnaryTestsF32::compute_ldlt_error(const int n,const int16_t *outpp)
  406. {
  407. float64_t *tmpa = tmpapat.ptr() ;
  408. float64_t *tmpb = tmpbpat.ptr() ;
  409. float64_t *tmpc = tmpcpat.ptr() ;
  410. /* Compute P A P^t */
  411. // Create identiy matrix
  412. for(int r=0; r < n; r++)
  413. {
  414. for(int c=0; c < n; c++)
  415. {
  416. if (r == c)
  417. {
  418. tmpa[r*n+c] = 1.0;
  419. }
  420. else
  421. {
  422. tmpa[r*n+c] = 0.0;
  423. }
  424. }
  425. }
  426. // Create permutation matrix
  427. for(int r=0;r < n; r++)
  428. {
  429. SWAP_ROWS(tmpa,r,outpp[r]);
  430. }
  431. trans_f64((const float64_t*)tmpa,tmpb,n);
  432. mult_f32_f64((const float32_t*)this->in1.pData,(const float64_t*)tmpb,tmpc,n);
  433. mult_f64_f64((const float64_t*)tmpa,(const float64_t*)tmpc,outa,n);
  434. /* Compute L D L^t */
  435. trans_f32_f64((const float32_t*)this->outll.pData,tmpc,n);
  436. mult_f32_f64((const float32_t*)this->outd.pData,(const float64_t*)tmpc,tmpa,n);
  437. mult_f32_f64((const float32_t*)this->outll.pData,(const float64_t*)tmpa,outb,n);
  438. }
  439. void UnaryTestsF32::test_mat_ldl_f32()
  440. {
  441. float32_t *ap=a.ptr();
  442. const float32_t *inp1=input1.ptr();
  443. float32_t *outllp=outputll.ptr();
  444. float32_t *outdp=outputd.ptr();
  445. int16_t *outpp=outputp.ptr();
  446. outa=outputa.ptr();
  447. outb=outputb.ptr();
  448. int16_t *dimsp = dims.ptr();
  449. int nbMatrixes = dims.nbSamples();
  450. int rows,columns;
  451. int i;
  452. arm_status status;
  453. for(i=0;i < nbMatrixes ; i ++)
  454. {
  455. rows = *dimsp++;
  456. columns = rows;
  457. PREPAREDATALL1();
  458. outd.numRows=rows;
  459. outd.numCols=columns;
  460. outd.pData=outdp;
  461. memset(outpp,0,rows*sizeof(uint16_t));
  462. memset(outdp,0,columns*rows*sizeof(float32_t));
  463. status=arm_mat_ldlt_f32(&this->in1,&this->outll,&this->outd,(uint16_t*)outpp);
  464. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  465. compute_ldlt_error(rows,outpp);
  466. outllp += (rows * columns);
  467. outdp += (rows * columns);
  468. outpp += rows;
  469. outa += (rows * columns);
  470. outb +=(rows * columns);
  471. inp1 += (rows * columns);
  472. }
  473. ASSERT_EMPTY_TAIL(outputll);
  474. ASSERT_EMPTY_TAIL(outputd);
  475. ASSERT_EMPTY_TAIL(outputp);
  476. ASSERT_EMPTY_TAIL(outputa);
  477. ASSERT_EMPTY_TAIL(outputb);
  478. ASSERT_CLOSE_ERROR(outputa,outputb,snrAbs,snrRel);
  479. }
  480. void UnaryTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
  481. {
  482. (void)params;
  483. switch(id)
  484. {
  485. case TEST_MAT_ADD_F32_1:
  486. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  487. input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
  488. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  489. ref.reload(UnaryTestsF32::REFADD1_F32_ID,mgr);
  490. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  491. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  492. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  493. break;
  494. case TEST_MAT_SUB_F32_2:
  495. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  496. input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
  497. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  498. ref.reload(UnaryTestsF32::REFSUB1_F32_ID,mgr);
  499. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  500. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  501. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  502. break;
  503. case TEST_MAT_SCALE_F32_3:
  504. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  505. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  506. ref.reload(UnaryTestsF32::REFSCALE1_F32_ID,mgr);
  507. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  508. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  509. break;
  510. case TEST_MAT_TRANS_F32_4:
  511. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  512. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  513. ref.reload(UnaryTestsF32::REFTRANS1_F32_ID,mgr);
  514. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  515. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  516. break;
  517. case TEST_MAT_INVERSE_F32_5:
  518. input1.reload(UnaryTestsF32::INPUTSINV_F32_ID,mgr);
  519. dims.reload(UnaryTestsF32::DIMSINVERT1_S16_ID,mgr);
  520. ref.reload(UnaryTestsF32::REFINV1_F32_ID,mgr);
  521. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  522. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  523. break;
  524. case TEST_MAT_VEC_MULT_F32_6:
  525. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  526. input2.reload(UnaryTestsF32::INPUTVEC1_F32_ID,mgr);
  527. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  528. ref.reload(UnaryTestsF32::REFVECMUL1_F32_ID,mgr);
  529. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  530. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  531. b.create(MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  532. break;
  533. case TEST_MAT_CMPLX_TRANS_F32_7:
  534. input1.reload(UnaryTestsF32::INPUTSC1_F32_ID,mgr);
  535. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  536. ref.reload(UnaryTestsF32::REFTRANSC1_F32_ID,mgr);
  537. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  538. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  539. break;
  540. case TEST_MAT_CHOLESKY_DPO_F32_8:
  541. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
  542. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  543. ref.reload(UnaryTestsF32::REFCHOLESKY1_DPO_F32_ID,mgr);
  544. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  545. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  546. break;
  547. case TEST_SOLVE_UPPER_TRIANGULAR_F32_9:
  548. input1.reload(UnaryTestsF32::INPUT_UT_DPO_F32_ID,mgr);
  549. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  550. input2.reload(UnaryTestsF32::INPUT_RNDA_DPO_F32_ID,mgr);
  551. ref.reload(UnaryTestsF32::REF_UTINV_DPO_F32_ID,mgr);
  552. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  553. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  554. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  555. break;
  556. case TEST_SOLVE_LOWER_TRIANGULAR_F32_10:
  557. input1.reload(UnaryTestsF32::INPUT_LT_DPO_F32_ID,mgr);
  558. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  559. input2.reload(UnaryTestsF32::INPUT_RNDA_DPO_F32_ID,mgr);
  560. ref.reload(UnaryTestsF32::REF_LTINV_DPO_F32_ID,mgr);
  561. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  562. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  563. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  564. break;
  565. case TEST_MAT_LDL_F32_11:
  566. // Definite positive test
  567. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
  568. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  569. outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
  570. outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
  571. outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
  572. outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
  573. outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
  574. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  575. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
  576. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
  577. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
  578. this->snrRel=REL_ERROR_LDLT;
  579. this->snrAbs=ABS_ERROR_LDLT;
  580. break;
  581. case TEST_MAT_LDL_F32_12:
  582. // Semi definite positive test
  583. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_SDPO_F32_ID,mgr);
  584. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_SDPO_S16_ID,mgr);
  585. outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
  586. outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
  587. outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
  588. outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
  589. outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
  590. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  591. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
  592. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
  593. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
  594. this->snrRel=REL_ERROR_LDLT_SPDO;
  595. this->snrAbs=ABS_ERROR_LDLT_SDPO;
  596. break;
  597. }
  598. }
  599. void UnaryTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
  600. {
  601. (void)id;
  602. (void)mgr;
  603. switch(id)
  604. {
  605. case TEST_MAT_LDL_F32_11:
  606. //outputll.dump(mgr);
  607. break;
  608. }
  609. //output.dump(mgr);
  610. }