arm_mat_cholesky_f16.c 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
  1. /* ----------------------------------------------------------------------
  2. * Project: CMSIS DSP Library
  3. * Title: arm_mat_cholesky_f16.c
  4. * Description: Floating-point Cholesky decomposition
  5. *
  6. * $Date: 23 April 2021
  7. * $Revision: V1.9.0
  8. *
  9. * Target Processor: Cortex-M and Cortex-A cores
  10. * -------------------------------------------------------------------- */
  11. /*
  12. * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
  13. *
  14. * SPDX-License-Identifier: Apache-2.0
  15. *
  16. * Licensed under the Apache License, Version 2.0 (the License); you may
  17. * not use this file except in compliance with the License.
  18. * You may obtain a copy of the License at
  19. *
  20. * www.apache.org/licenses/LICENSE-2.0
  21. *
  22. * Unless required by applicable law or agreed to in writing, software
  23. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  24. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  25. * See the License for the specific language governing permissions and
  26. * limitations under the License.
  27. */
  28. #include "dsp/matrix_functions_f16.h"
  29. #if defined(ARM_FLOAT16_SUPPORTED)
  30. /**
  31. @ingroup groupMatrix
  32. */
  33. /**
  34. @addtogroup MatrixChol
  35. @{
  36. */
  37. /**
  38. * @brief Floating-point Cholesky decomposition of positive-definite matrix.
  39. * @param[in] pSrc points to the instance of the input floating-point matrix structure.
  40. * @param[out] pDst points to the instance of the output floating-point matrix structure.
  41. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
  42. * @return execution status
  43. - \ref ARM_MATH_SUCCESS : Operation successful
  44. - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
  45. - \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
  46. * @par
  47. * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
  48. * The decomposition of A is returning a lower triangular matrix U such that A = U U^t
  49. */
  50. #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
  51. #include "arm_helium_utils.h"
  52. arm_status arm_mat_cholesky_f16(
  53. const arm_matrix_instance_f16 * pSrc,
  54. arm_matrix_instance_f16 * pDst)
  55. {
  56. arm_status status; /* status of matrix inverse */
  57. #ifdef ARM_MATH_MATRIX_CHECK
  58. /* Check for matrix mismatch condition */
  59. if ((pSrc->numRows != pSrc->numCols) ||
  60. (pDst->numRows != pDst->numCols) ||
  61. (pSrc->numRows != pDst->numRows) )
  62. {
  63. /* Set status as ARM_MATH_SIZE_MISMATCH */
  64. status = ARM_MATH_SIZE_MISMATCH;
  65. }
  66. else
  67. #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
  68. {
  69. int i,j,k;
  70. int n = pSrc->numRows;
  71. _Float16 invSqrtVj;
  72. float16_t *pA,*pG;
  73. int kCnt;
  74. mve_pred16_t p0;
  75. f16x8_t acc, acc0, acc1, acc2, acc3;
  76. f16x8_t vecGi;
  77. f16x8_t vecGj,vecGj0,vecGj1,vecGj2,vecGj3;
  78. pA = pSrc->pData;
  79. pG = pDst->pData;
  80. for(i=0 ;i < n ; i++)
  81. {
  82. for(j=i ; j+3 < n ; j+=4)
  83. {
  84. acc0 = vdupq_n_f16(0.0f16);
  85. acc0[0]=pA[(j + 0) * n + i];
  86. acc1 = vdupq_n_f16(0.0f16);
  87. acc1[0]=pA[(j + 1) * n + i];
  88. acc2 = vdupq_n_f16(0.0f16);
  89. acc2[0]=pA[(j + 2) * n + i];
  90. acc3 = vdupq_n_f16(0.0f16);
  91. acc3[0]=pA[(j + 3) * n + i];
  92. kCnt = i;
  93. for(k=0; k < i ; k+=8)
  94. {
  95. p0 = vctp16q(kCnt);
  96. vecGi=vldrhq_z_f16(&pG[i * n + k],p0);
  97. vecGj0=vldrhq_z_f16(&pG[(j + 0) * n + k],p0);
  98. vecGj1=vldrhq_z_f16(&pG[(j + 1) * n + k],p0);
  99. vecGj2=vldrhq_z_f16(&pG[(j + 2) * n + k],p0);
  100. vecGj3=vldrhq_z_f16(&pG[(j + 3) * n + k],p0);
  101. acc0 = vfmsq_m(acc0, vecGi, vecGj0, p0);
  102. acc1 = vfmsq_m(acc1, vecGi, vecGj1, p0);
  103. acc2 = vfmsq_m(acc2, vecGi, vecGj2, p0);
  104. acc3 = vfmsq_m(acc3, vecGi, vecGj3, p0);
  105. kCnt -= 8;
  106. }
  107. pG[(j + 0) * n + i] = vecAddAcrossF16Mve(acc0);
  108. pG[(j + 1) * n + i] = vecAddAcrossF16Mve(acc1);
  109. pG[(j + 2) * n + i] = vecAddAcrossF16Mve(acc2);
  110. pG[(j + 3) * n + i] = vecAddAcrossF16Mve(acc3);
  111. }
  112. for(; j < n ; j++)
  113. {
  114. kCnt = i;
  115. acc = vdupq_n_f16(0.0f16);
  116. acc[0] = pA[j * n + i];
  117. for(k=0; k < i ; k+=8)
  118. {
  119. p0 = vctp16q(kCnt);
  120. vecGi=vldrhq_z_f16(&pG[i * n + k],p0);
  121. vecGj=vldrhq_z_f16(&pG[j * n + k],p0);
  122. acc = vfmsq_m(acc, vecGi, vecGj,p0);
  123. kCnt -= 8;
  124. }
  125. pG[j * n + i] = vecAddAcrossF16Mve(acc);
  126. }
  127. if ((_Float16)pG[i * n + i] <= 0.0f16)
  128. {
  129. return(ARM_MATH_DECOMPOSITION_FAILURE);
  130. }
  131. invSqrtVj = 1.0f16/(_Float16)sqrtf((float32_t)pG[i * n + i]);
  132. for(j=i; j < n ; j++)
  133. {
  134. pG[j * n + i] = (_Float16)pG[j * n + i] * (_Float16)invSqrtVj ;
  135. }
  136. }
  137. status = ARM_MATH_SUCCESS;
  138. }
  139. /* Return to application */
  140. return (status);
  141. }
  142. #else
  143. arm_status arm_mat_cholesky_f16(
  144. const arm_matrix_instance_f16 * pSrc,
  145. arm_matrix_instance_f16 * pDst)
  146. {
  147. arm_status status; /* status of matrix inverse */
  148. #ifdef ARM_MATH_MATRIX_CHECK
  149. /* Check for matrix mismatch condition */
  150. if ((pSrc->numRows != pSrc->numCols) ||
  151. (pDst->numRows != pDst->numCols) ||
  152. (pSrc->numRows != pDst->numRows) )
  153. {
  154. /* Set status as ARM_MATH_SIZE_MISMATCH */
  155. status = ARM_MATH_SIZE_MISMATCH;
  156. }
  157. else
  158. #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
  159. {
  160. int i,j,k;
  161. int n = pSrc->numRows;
  162. float16_t invSqrtVj;
  163. float16_t *pA,*pG;
  164. pA = pSrc->pData;
  165. pG = pDst->pData;
  166. for(i=0 ; i < n ; i++)
  167. {
  168. for(j=i ; j < n ; j++)
  169. {
  170. pG[j * n + i] = pA[j * n + i];
  171. for(k=0; k < i ; k++)
  172. {
  173. pG[j * n + i] = (_Float16)pG[j * n + i] - (_Float16)pG[i * n + k] * (_Float16)pG[j * n + k];
  174. }
  175. }
  176. if ((_Float16)pG[i * n + i] <= 0.0f16)
  177. {
  178. return(ARM_MATH_DECOMPOSITION_FAILURE);
  179. }
  180. /* The division is done in float32 for accuracy reason and
  181. because doing it in f16 would not have any impact on the performances.
  182. */
  183. invSqrtVj = 1.0f/sqrtf((float32_t)pG[i * n + i]);
  184. for(j=i ; j < n ; j++)
  185. {
  186. pG[j * n + i] = (_Float16)pG[j * n + i] * (_Float16)invSqrtVj ;
  187. }
  188. }
  189. status = ARM_MATH_SUCCESS;
  190. }
  191. /* Return to application */
  192. return (status);
  193. }
  194. #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
  195. /**
  196. @} end of MatrixChol group
  197. */
  198. #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */