| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_inverse_f32.c
- * Description: Floating-point matrix inverse
- *
- * $Date: 18. March 2019
- * $Revision: V1.6.0
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- /**
- @ingroup groupMatrix
- */
- /**
- @defgroup MatrixInv Matrix Inverse
- Computes the inverse of a matrix.
- The inverse is defined only if the input matrix is square and non-singular (the determinant is non-zero).
- The function checks that the input and output matrices are square and of the same size.
- Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix
- inversion of floating-point matrices.
- @par Algorithm
- The Gauss-Jordan method is used to find the inverse.
- The algorithm performs a sequence of elementary row-operations until it
- reduces the input matrix to an identity matrix. Applying the same sequence
- of elementary row-operations to an identity matrix yields the inverse matrix.
- If the input matrix is singular, then the algorithm terminates and returns error status
- <code>ARM_MATH_SINGULAR</code>.
- \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"
- */
- /**
- @addtogroup MatrixInv
- @{
- */
- /**
- @brief Floating-point matrix inverse.
- @param[in] pSrc points to input matrix structure. The source matrix is modified by the function.
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- - \ref ARM_MATH_SINGULAR : Input matrix is found to be singular (non-invertible)
- */
- #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
- arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
- float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
- float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
- uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
- uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
- float32_t *pTmpA, *pTmpB;
- float32_t in = 0.0f; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
- uint32_t blkCnt;
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
- || (pSrc->numRows != pDst->numRows))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _ _ _ _ _
- * | | a11 a12 | | | 1 0 | | | X11 X12 |
- * | | | | | | | = | |
- * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
- * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
- *----------------------------------------------------------------------------------------------------------------*/
- /*
- * Working pointer for destination matrix
- */
- pOutT1 = pOut;
- /*
- * Loop over the number of rows
- */
- rowCnt = numRows;
- /*
- * Making the destination matrix as identity matrix
- */
- while (rowCnt > 0U)
- {
- /*
- * Writing all zeroes in lower triangle of the destination matrix
- */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /*
- * Writing all ones in the diagonal of the destination matrix
- */
- *pOutT1++ = 1.0f;
- /*
- * Writing all zeroes in upper triangle of the destination matrix
- */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /*
- * Decrement the loop counter
- */
- rowCnt--;
- }
- /*
- * Loop over the number of columns of the input matrix.
- * All the elements in each column are processed by the row operations
- */
- loopCnt = numCols;
- /*
- * Index modifier to navigate through the columns
- */
- l = 0U;
- while (loopCnt > 0U)
- {
- /*
- * Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular.
- */
- /*
- * Working pointer for the input matrix that points
- * * to the pivot element of the particular row
- */
- pInT1 = pIn + (l * numCols);
- /*
- * Working pointer for the destination matrix that points
- * * to the pivot element of the particular row
- */
- pOutT1 = pOut + (l * numCols);
- /*
- * Temporary variable to hold the pivot value
- */
- in = *pInT1;
- /*
- * Destination pointer modifier
- */
- k = 1U;
- /*
- * Check if the pivot element is zero
- */
- if (*pInT1 == 0.0f)
- {
- /*
- * Loop over the number rows present below
- */
- for (i = (l + 1U); i < numRows; i++)
- {
- /*
- * Update the input and destination pointers
- */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * k);
- /*
- * Check if there is a non zero pivot element to
- * * replace in the rows below
- */
- if (*pInT2 != 0.0f)
- {
- f32x4_t vecA, vecB;
- /*
- * Loop over number of columns
- * * to the right of the pilot element
- */
- pTmpA = pInT1;
- pTmpB = pInT2;
- blkCnt = (numCols - l) >> 2;
- while (blkCnt > 0U)
- {
-
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_f32(pTmpB, vecA);
- vstrwq_f32(pTmpA, vecB);
- pTmpA += 4;
- pTmpB += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = (numCols - l) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_p_f32(pTmpB, vecA, p0);
- vstrwq_p_f32(pTmpA, vecB, p0);
- }
- pInT1 += numCols - l;
- pInT2 += numCols - l;
- pTmpA = pOutT1;
- pTmpB = pOutT2;
- blkCnt = numCols >> 2;
- while (blkCnt > 0U)
- {
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_f32(pTmpB, vecA);
- vstrwq_f32(pTmpA, vecB);
- pTmpA += 4;
- pTmpB += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = numCols & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_p_f32(pTmpB, vecA, p0);
- vstrwq_p_f32(pTmpA, vecB, p0);
- }
- pOutT1 += numCols;
- pOutT2 += numCols;
- /*
- * Flag to indicate whether exchange is done or not
- */
- flag = 1U;
- /*
- * Break after exchange is done
- */
- break;
- }
- /*
- * Update the destination pointer modifier
- */
- k++;
- }
- }
- /*
- * Update the status if the matrix is singular
- */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
- /*
- * Points to the pivot row of input and destination matrices
- */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
- /*
- * Temporary pointers to the pivot row pointers
- */
- pInT1 = pPivotRowIn;
- pOutT1 = pPivotRowDst;
- /*
- * Pivot element of the row
- */
- in = *(pIn + (l * numCols));
- pTmpA = pInT1;
- f32x4_t invIn = vdupq_n_f32(1.0f / in);
- blkCnt = (numCols - l) >> 2;
- f32x4_t vecA;
- while (blkCnt > 0U)
- {
- *(f32x4_t *) pTmpA = *(f32x4_t *) pTmpA * invIn;
- pTmpA += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = (numCols - l) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
-
- vecA = vldrwq_f32(pTmpA);
- vecA = vecA * invIn;
- vstrwq_p_f32(pTmpA, vecA, p0);
- }
- pInT1 += numCols - l;
- /*
- * Loop over number of columns
- * * to the right of the pilot element
- */
- pTmpA = pOutT1;
- blkCnt = numCols >> 2;
- while (blkCnt > 0U)
- {
- *(f32x4_t *) pTmpA = *(f32x4_t *) pTmpA *invIn;
- pTmpA += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numCols & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecA = vldrwq_f32(pTmpA);
- vecA = vecA * invIn;
- vstrwq_p_f32(pTmpA, vecA, p0);
- }
- pOutT1 += numCols;
- /*
- * Replace the rows with the sum of that row and a multiple of row i
- * * so that each new element in column i above row i is zero.
- */
- /*
- * Temporary pointers for input and destination matrices
- */
- pInT1 = pIn;
- pOutT1 = pOut;
- for (i = 0U; i < numRows; i++)
- {
- /*
- * Check for the pivot element
- */
- if (i == l)
- {
- /*
- * If the processing element is the pivot element,
- * only the columns to the right are to be processed
- */
- pInT1 += numCols - l;
- pOutT1 += numCols;
- }
- else
- {
- /*
- * Element of the reference row
- */
- /*
- * Working pointers for input and destination pivot rows
- */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
- /*
- * Loop over the number of columns to the right of the pivot element,
- * to replace the elements in the input matrix
- */
- in = *pInT1;
- f32x4_t tmpV = vdupq_n_f32(in);
- blkCnt = (numCols - l) >> 2;
- while (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- /*
- * Replace the element by the sum of that row
- * and a multiple of the reference row
- */
- vec1 = vldrwq_f32(pInT1);
- vec2 = vldrwq_f32(pPRT_in);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_f32(pInT1, vec1);
- pPRT_in += 4;
- pInT1 += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = (numCols - l) & 3;
- if (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- mve_pred16_t p0 = vctp32q(blkCnt);
- vec1 = vldrwq_f32(pInT1);
- vec2 = vldrwq_f32(pPRT_in);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_p_f32(pInT1, vec1, p0);
- pInT1 += blkCnt;
- }
- blkCnt = numCols >> 2;
- while (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- /*
- * Replace the element by the sum of that row
- * and a multiple of the reference row
- */
- vec1 = vldrwq_f32(pOutT1);
- vec2 = vldrwq_f32(pPRT_pDst);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_f32(pOutT1, vec1);
- pPRT_pDst += 4;
- pOutT1 += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numCols & 3;
- if (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- mve_pred16_t p0 = vctp32q(blkCnt);
- vec1 = vldrwq_f32(pOutT1);
- vec2 = vldrwq_f32(pPRT_pDst);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_p_f32(pOutT1, vec1, p0);
- pInT2 += blkCnt;
- pOutT1 += blkCnt;
- }
- }
- /*
- * Increment the temporary input pointer
- */
- pInT1 = pInT1 + l;
- }
- /*
- * Increment the input pointer
- */
- pIn++;
- /*
- * Decrement the loop counter
- */
- loopCnt--;
- /*
- * Increment the index modifier
- */
- l++;
- }
- /*
- * Set status as ARM_MATH_SUCCESS
- */
- status = ARM_MATH_SUCCESS;
- if ((flag != 1U) && (in == 0.0f))
- {
- pIn = pSrc->pData;
- for (i = 0; i < numRows * numCols; i++)
- {
- if (pIn[i] != 0.0f)
- break;
- }
- if (i == numRows * numCols)
- status = ARM_MATH_SINGULAR;
- }
- }
- /* Return to application */
- return (status);
- }
- #else
- #if defined(ARM_MATH_NEON)
- arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
- float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
- float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
- uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
- uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
- float32_t Xchg, in = 0.0f, in1; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
- float32x4_t vec1;
- float32x4_t vec2;
- float32x4_t tmpV;
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
- || (pSrc->numRows != pDst->numRows))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _
- * | a11 a12 | 1 0 | | X11 X12 |
- * | | | = | |
- * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
- * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
- *----------------------------------------------------------------------------------------------------------------*/
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
- /* Loop over the number of rows */
- rowCnt = numRows;
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Decrement the loop counter */
- rowCnt--;
- }
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
- /* Index modifier to navigate through the columns */
- l = 0U;
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
-
- /* Destination pointer modifier */
- k = 1U;
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0f)
- {
- /* Loop over the number rows present below */
- for (i = (l + 1U); i < numRows; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * k);
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0f)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- j = numCols - l;
- while (j > 0U)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over number of columns of the destination matrix */
- j = numCols;
- while (j > 0U)
- {
- /* Exchange the row elements of the destination matrix */
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
- /* Decrement the loop counter */
- j--;
- }
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
- /* Break after exchange is done */
- break;
- }
- /* Update the destination pointer modifier */
- k++;
- }
- }
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pInT2 = pPivotRowDst;
- /* Pivot element of the row */
- in = *pPivotRowIn;
- tmpV = vdupq_n_f32(1.0f/in);
- /* Loop over number of columns
- * to the right of the pilot element */
- j = (numCols - l) >> 2;
- while (j > 0U)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- vec1 = vld1q_f32(pInT1);
- vec1 = vmulq_f32(vec1, tmpV);
- vst1q_f32(pInT1, vec1);
- pInT1 += 4;
- /* Decrement the loop counter */
- j--;
- }
- /* Tail */
- j = (numCols - l) & 3;
- while (j > 0U)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- in1 = *pInT1;
- *pInT1++ = in1 / in;
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over number of columns of the destination matrix */
- j = numCols >> 2;
- while (j > 0U)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- vec1 = vld1q_f32(pInT2);
- vec1 = vmulq_f32(vec1, tmpV);
- vst1q_f32(pInT2, vec1);
- pInT2 += 4;
-
- /* Decrement the loop counter */
- j--;
- }
- /* Tail */
- j = numCols & 3;
- while (j > 0U)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- in1 = *pInT2;
- *pInT2++ = in1 / in;
- /* Decrement the loop counter */
- j--;
- }
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pInT2 = pOut;
- /* index used to check for pivot element */
- i = 0U;
- /* Loop over number of rows */
- /* to be replaced by the sum of that row and a multiple of row i */
- k = numRows;
- while (k > 0U)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
- pInT2 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
- tmpV = vdupq_n_f32(in);
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- j = (numCols - l) >> 2;
-
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- vec1 = vld1q_f32(pInT1);
- vec2 = vld1q_f32(pPRT_in);
- vec1 = vmlsq_f32(vec1, tmpV, vec2);
- vst1q_f32(pInT1, vec1);
- pPRT_in += 4;
- pInT1 += 4;
- /* Decrement the loop counter */
- j--;
- }
- /* Tail */
- j = (numCols - l) & 3;
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT1;
- *pInT1++ = in1 - (in * *pPRT_in++);
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- j = numCols >> 2;
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- vec1 = vld1q_f32(pInT2);
- vec2 = vld1q_f32(pPRT_pDst);
- vec1 = vmlsq_f32(vec1, tmpV, vec2);
- vst1q_f32(pInT2, vec1);
- pPRT_pDst += 4;
- pInT2 += 4;
- /* Decrement the loop counter */
- j--;
- }
- /* Tail */
- j = numCols & 3;
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT2;
- *pInT2++ = in1 - (in * *pPRT_pDst++);
- /* Decrement the loop counter */
- j--;
- }
- }
- /* Increment the temporary input pointer */
- pInT1 = pInT1 + l;
- /* Decrement the loop counter */
- k--;
- /* Increment the pivot index */
- i++;
- }
- /* Increment the input pointer */
- pIn++;
- /* Decrement the loop counter */
- loopCnt--;
- /* Increment the index modifier */
- l++;
- }
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- if ((flag != 1U) && (in == 0.0f))
- {
- pIn = pSrc->pData;
- for (i = 0; i < numRows * numCols; i++)
- {
- if (pIn[i] != 0.0f)
- break;
- }
- if (i == numRows * numCols)
- status = ARM_MATH_SINGULAR;
- }
- }
- /* Return to application */
- return (status);
- }
- #else
- arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
- float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
- float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
- uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
- uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
- #if defined (ARM_MATH_DSP)
- float32_t Xchg, in = 0.0f, in1; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pDst->numRows != pDst->numCols) ||
- (pSrc->numRows != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _
- * | a11 a12 | 1 0 | | X11 X12 |
- * | | | = | |
- * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
- * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
- *----------------------------------------------------------------------------------------------------------------*/
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
- /* Loop over the number of rows */
- rowCnt = numRows;
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Decrement loop counter */
- rowCnt--;
- }
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
- /* Index modifier to navigate through the columns */
- l = 0U;
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
-
- /* Destination pointer modifier */
- k = 1U;
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0f)
- {
- /* Loop over the number rows present below */
- for (i = (l + 1U); i < numRows; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * k);
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0f)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- j = numCols - l;
- while (j > 0U)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over number of columns of the destination matrix */
- j = numCols;
- while (j > 0U)
- {
- /* Exchange the row elements of the destination matrix */
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
- /* Decrement loop counter */
- j--;
- }
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
- /* Break after exchange is done */
- break;
- }
- /* Update the destination pointer modifier */
- k++;
- /* Decrement loop counter */
- }
- }
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pInT2 = pPivotRowDst;
- /* Pivot element of the row */
- in = *pPivotRowIn;
- /* Loop over number of columns
- * to the right of the pilot element */
- j = (numCols - l);
- while (j > 0U)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- in1 = *pInT1;
- *pInT1++ = in1 / in;
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over number of columns of the destination matrix */
- j = numCols;
- while (j > 0U)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- in1 = *pInT2;
- *pInT2++ = in1 / in;
- /* Decrement the loop counter */
- j--;
- }
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pInT2 = pOut;
- /* index used to check for pivot element */
- i = 0U;
- /* Loop over number of rows */
- /* to be replaced by the sum of that row and a multiple of row i */
- k = numRows;
- while (k > 0U)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
- pInT2 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- j = (numCols - l);
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT1;
- *pInT1++ = in1 - (in * *pPRT_in++);
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- j = numCols;
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT2;
- *pInT2++ = in1 - (in * *pPRT_pDst++);
- /* Decrement loop counter */
- j--;
- }
- }
- /* Increment temporary input pointer */
- pInT1 = pInT1 + l;
- /* Decrement loop counter */
- k--;
- /* Increment pivot index */
- i++;
- }
- /* Increment the input pointer */
- pIn++;
- /* Decrement the loop counter */
- loopCnt--;
- /* Increment the index modifier */
- l++;
- }
- #else
- float32_t Xchg, in = 0.0f; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pDst->numRows != pDst->numCols) ||
- (pSrc->numRows != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _ _ _ _ _
- * | | a11 a12 | | | 1 0 | | | X11 X12 |
- * | | | | | | | = | |
- * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
- * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
- *----------------------------------------------------------------------------------------------------------------*/
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
- /* Loop over the number of rows */
- rowCnt = numRows;
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Decrement loop counter */
- rowCnt--;
- }
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
- /* Index modifier to navigate through the columns */
- l = 0U;
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
- /* Destination pointer modifier */
- k = 1U;
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0f)
- {
- /* Loop over the number rows present below */
- for (i = (l + 1U); i < numRows; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * k);
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0f)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
- }
- for (j = 0U; j < numCols; j++)
- {
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
- }
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
- /* Break after exchange is done */
- break;
- }
- /* Update the destination pointer modifier */
- k++;
- }
- }
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pOutT1 = pPivotRowDst;
- /* Pivot element of the row */
- in = *(pIn + (l * numCols));
- /* Loop over number of columns
- * to the right of the pilot element */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- *pInT1 = *pInT1 / in;
- pInT1++;
- }
- for (j = 0U; j < numCols; j++)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- *pOutT1 = *pOutT1 / in;
- pOutT1++;
- }
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pOutT1 = pOut;
- for (i = 0U; i < numRows; i++)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
- pOutT1 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- *pInT1 = *pInT1 - (in * *pPRT_in++);
- pInT1++;
- }
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- for (j = 0U; j < numCols; j++)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- *pOutT1 = *pOutT1 - (in * *pPRT_pDst++);
- pOutT1++;
- }
- }
- /* Increment temporary input pointer */
- pInT1 = pInT1 + l;
- }
- /* Increment the input pointer */
- pIn++;
- /* Decrement the loop counter */
- loopCnt--;
- /* Increment the index modifier */
- l++;
- }
- #endif /* #if defined (ARM_MATH_DSP) */
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- if ((flag != 1U) && (in == 0.0f))
- {
- pIn = pSrc->pData;
- for (i = 0; i < numRows * numCols; i++)
- {
- if (pIn[i] != 0.0f)
- break;
- }
- if (i == numRows * numCols)
- status = ARM_MATH_SINGULAR;
- }
- }
- /* Return to application */
- return (status);
- }
- #endif /* #if defined(ARM_MATH_NEON) */
- #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
- /**
- @} end of MatrixInv group
- */
|