arm_convolve_HWC_q15_basic.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. /*
  2. * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Licensed under the Apache License, Version 2.0 (the License); you may
  7. * not use this file except in compliance with the License.
  8. * You may obtain a copy of the License at
  9. *
  10. * www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  14. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. */
  18. /* ----------------------------------------------------------------------
  19. * Project: CMSIS NN Library
  20. * Title: arm_convolve_HWC_q15_basic.c
  21. * Description: Q15 version of convolution
  22. *
  23. * $Date: 17. January 2018
  24. * $Revision: V.1.0.0
  25. *
  26. * Target Processor: Cortex-M cores
  27. *
  28. * -------------------------------------------------------------------- */
  29. #include "arm_math.h"
  30. #include "arm_nnfunctions.h"
  31. /**
  32. * @ingroup groupNN
  33. */
  34. /**
  35. * @addtogroup NNConv
  36. * @{
  37. */
  38. /**
  39. * @brief Basic Q15 convolution function
  40. * @param[in] Im_in pointer to input tensor
  41. * @param[in] dim_im_in input tensor dimention
  42. * @param[in] ch_im_in number of input tensor channels
  43. * @param[in] wt pointer to kernel weights
  44. * @param[in] ch_im_out number of filters, i.e., output tensor channels
  45. * @param[in] dim_kernel filter kernel size
  46. * @param[in] padding padding sizes
  47. * @param[in] stride convolution stride
  48. * @param[in] bias pointer to bias
  49. * @param[in] bias_shift amount of left-shift for bias
  50. * @param[in] out_shift amount of right-shift for output
  51. * @param[in,out] Im_out pointer to output tensor
  52. * @param[in] dim_im_out output tensor dimension
  53. * @param[in,out] bufferA pointer to buffer space for input
  54. * @param[in,out] bufferB pointer to buffer space for output
  55. * @return The function returns <code>ARM_MATH_SUCCESS</code>
  56. *
  57. * @details
  58. *
  59. * <b>Buffer size:</b>
  60. *
  61. * bufferA size: ch_im_in*dim_kernel*dim_kernel
  62. *
  63. * bufferB size: 0
  64. *
  65. * This basic version is designed to work for any input tensor and weight
  66. * dimension.
  67. */
  68. arm_status
  69. arm_convolve_HWC_q15_basic(const q15_t * Im_in,
  70. const uint16_t dim_im_in,
  71. const uint16_t ch_im_in,
  72. const q15_t * wt,
  73. const uint16_t ch_im_out,
  74. const uint16_t dim_kernel,
  75. const uint16_t padding,
  76. const uint16_t stride,
  77. const q15_t * bias,
  78. const uint16_t bias_shift,
  79. const uint16_t out_shift,
  80. q15_t * Im_out,
  81. const uint16_t dim_im_out,
  82. q15_t * bufferA,
  83. q7_t * bufferB)
  84. {
  85. (void)bufferB;
  86. #if defined (ARM_MATH_DSP)
  87. /* Run the following code for Cortex-M4 and Cortex-M7 */
  88. int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
  89. uint16_t im2col_out_pixel_index = 0;
  90. q15_t *pBuffer = bufferA;
  91. q15_t *pOut = Im_out;
  92. q15_t *im_buffer = bufferA;
  93. const q15_t *pA;
  94. int i;
  95. /* This part implements the im2col function */
  96. for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
  97. {
  98. for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
  99. {
  100. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  101. {
  102. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  103. {
  104. if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
  105. {
  106. /* Filling 0 for out-of-bound paddings */
  107. /* arm_fill_q15(0, pBuffer, ch_im_in); */
  108. memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
  109. } else
  110. {
  111. /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
  112. memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
  113. }
  114. pBuffer += ch_im_in;
  115. }
  116. }
  117. pA = wt;
  118. for (i = 0; i < ch_im_out; i++)
  119. {
  120. q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
  121. const q15_t *pB = im_buffer;
  122. uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
  123. while (colCnt)
  124. {
  125. q31_t inA1 = arm_nn_read_q15x2_ia(&pA);
  126. q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
  127. q31_t inA2 = arm_nn_read_q15x2_ia(&pA);
  128. q31_t inB2 = arm_nn_read_q15x2_ia(&pB);
  129. sum = __SMLAD(inA1, inB1, sum);
  130. sum = __SMLAD(inA2, inB2, sum);
  131. colCnt--;
  132. }
  133. colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
  134. while (colCnt)
  135. {
  136. q15_t inA1 = *pA++;
  137. q15_t inB1 = *pB++;
  138. sum += inA1 * inB1;
  139. colCnt--;
  140. }
  141. *pOut = (q15_t) __SSAT((sum >> out_shift), 16);
  142. pOut++;
  143. }
  144. /* counter reset */
  145. pBuffer = im_buffer;
  146. im2col_out_pixel_index++;
  147. }
  148. }
  149. #else
  150. /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
  151. uint16_t i, j, k, l, m, n;
  152. int conv_out;
  153. signed char in_row, in_col;
  154. for (i = 0; i < ch_im_out; i++)
  155. {
  156. for (j = 0; j < dim_im_out; j++)
  157. {
  158. for (k = 0; k < dim_im_out; k++)
  159. {
  160. conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
  161. for (m = 0; m < dim_kernel; m++)
  162. {
  163. for (n = 0; n < dim_kernel; n++)
  164. {
  165. in_row = stride * j + m - padding;
  166. in_col = stride * k + n - padding;
  167. if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
  168. {
  169. for (l = 0; l < ch_im_in; l++)
  170. {
  171. conv_out +=
  172. Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
  173. l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
  174. n) * ch_im_in + l];
  175. }
  176. }
  177. }
  178. }
  179. Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
  180. }
  181. }
  182. }
  183. #endif /* ARM_MATH_DSP */
  184. /* Return to application */
  185. return ARM_MATH_SUCCESS;
  186. }
  187. /**
  188. * @} end of NNConv group
  189. */