arm_convolve_HWC_q7_RGB.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279
  1. /*
  2. * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Licensed under the Apache License, Version 2.0 (the License); you may
  7. * not use this file except in compliance with the License.
  8. * You may obtain a copy of the License at
  9. *
  10. * www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  14. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. */
  18. /* ----------------------------------------------------------------------
  19. * Project: CMSIS NN Library
  20. * Title: arm_convolve_HWC_q7_RGB.c
  21. * Description: Q7 version of convolution for RGB image
  22. *
  23. * $Date: 17. January 2018
  24. * $Revision: V.1.0.0
  25. *
  26. * Target Processor: Cortex-M cores
  27. *
  28. * -------------------------------------------------------------------- */
  29. #include "arm_math.h"
  30. #include "arm_nnfunctions.h"
  31. /**
  32. * @ingroup groupNN
  33. */
  34. /**
  35. * @addtogroup NNConv
  36. * @{
  37. */
  38. /**
  39. * @brief Q7 convolution function for RGB image
  40. * @param[in] Im_in pointer to input tensor
  41. * @param[in] dim_im_in input tensor dimention
  42. * @param[in] ch_im_in number of input tensor channels
  43. * @param[in] wt pointer to kernel weights
  44. * @param[in] ch_im_out number of filters, i.e., output tensor channels
  45. * @param[in] dim_kernel filter kernel size
  46. * @param[in] padding padding sizes
  47. * @param[in] stride convolution stride
  48. * @param[in] bias pointer to bias
  49. * @param[in] bias_shift amount of left-shift for bias
  50. * @param[in] out_shift amount of right-shift for output
  51. * @param[in,out] Im_out pointer to output tensor
  52. * @param[in] dim_im_out output tensor dimension
  53. * @param[in,out] bufferA pointer to buffer space for input
  54. * @param[in,out] bufferB pointer to buffer space for output
  55. * @return The function returns either
  56. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  57. *
  58. * @details
  59. *
  60. * <b>Buffer size:</b>
  61. *
  62. * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
  63. *
  64. * bufferB size: 0
  65. *
  66. * <b>Input dimension constraints:</b>
  67. *
  68. * ch_im_in equals 3
  69. *
  70. * This kernel is written exclusively for convolution with ch_im_in
  71. * equals 3. This applies on the first layer of CNNs which has input
  72. * image with RGB format.
  73. */
  74. arm_status
  75. arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
  76. const uint16_t dim_im_in,
  77. const uint16_t ch_im_in,
  78. const q7_t * wt,
  79. const uint16_t ch_im_out,
  80. const uint16_t dim_kernel,
  81. const uint16_t padding,
  82. const uint16_t stride,
  83. const q7_t * bias,
  84. const uint16_t bias_shift,
  85. const uint16_t out_shift,
  86. q7_t * Im_out, const uint16_t dim_im_out, q15_t * bufferA, q7_t * bufferB)
  87. {
  88. (void)bufferB;
  89. #if defined (ARM_MATH_DSP)
  90. /* Run the following code for Cortex-M4 and Cortex-M7 */
  91. int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
  92. /*
  93. * Here we use bufferA as q15_t internally as computation are done with q15_t level
  94. * im2col are done to output in q15_t format from q7_t input
  95. */
  96. q15_t *pBuffer = bufferA;
  97. q7_t *pOut = Im_out;
  98. // check if number of input channels is 3
  99. if (ch_im_in != 3)
  100. {
  101. return ARM_MATH_SIZE_MISMATCH;
  102. }
  103. // This part implements the im2col function
  104. for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
  105. {
  106. for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
  107. {
  108. for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
  109. {
  110. for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
  111. {
  112. if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
  113. {
  114. /* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */
  115. *__SIMD32(pBuffer) = 0x0;
  116. *(pBuffer + 2) = 0;
  117. pBuffer += 3;
  118. } else
  119. {
  120. /*
  121. * Equivalent to:
  122. * arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3);
  123. */
  124. const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3;
  125. q31_t buf = arm_nn_read_q7x4(pPixel);
  126. union arm_nnword top;
  127. union arm_nnword bottom;
  128. top.word = __SXTB16(buf);
  129. bottom.word = __SXTB16(__ROR(buf, 8));
  130. #ifndef ARM_MATH_BIG_ENDIAN
  131. /*
  132. * little-endian, | omit | 3rd | 2nd | 1st |
  133. * MSB LSB
  134. * top | 3rd | 1st |; bottom | omit | 2nd |
  135. *
  136. * version 1, need to swap 2nd and 3rd weight
  137. * *__SIMD32(pBuffer) = top.word;
  138. * *(pBuffer+2) = bottom.half_words[0];
  139. *
  140. * version 2, no weight shuffling required
  141. */
  142. *pBuffer++ = top.half_words[0];
  143. *__SIMD32(pBuffer) = __PKHBT(bottom.word, top.word, 0);
  144. #else
  145. /*
  146. * big-endian, | 1st | 2nd | 3rd | omit |
  147. * MSB LSB
  148. * top | 2nd | omit |; bottom | 1st | 3rd |
  149. *
  150. * version 1, need to swap 2nd and 3rd weight
  151. * *__SIMD32(pBuffer) = bottom.word;
  152. * *(pBuffer+2) = top.half_words[1];
  153. *
  154. * version 2, no weight shuffling required
  155. */
  156. *pBuffer++ = bottom.half_words[0];
  157. *__SIMD32(pBuffer) = __PKHTB(top.word, bottom.word, 0);
  158. #endif
  159. pBuffer += 2;
  160. }
  161. }
  162. }
  163. if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel)
  164. {
  165. pOut =
  166. arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
  167. ch_im_out,
  168. 3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
  169. /* counter reset */
  170. pBuffer = bufferA;
  171. }
  172. }
  173. }
  174. /* left-over because odd number of output pixels */
  175. if (pBuffer != bufferA)
  176. {
  177. const q7_t *pA = wt;
  178. int i;
  179. for (i = 0; i < ch_im_out; i++)
  180. {
  181. q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
  182. q15_t *pB = bufferA;
  183. /* basically each time it process 4 entries */
  184. uint16_t colCnt = 3 * dim_kernel * dim_kernel >> 2;
  185. while (colCnt)
  186. {
  187. q31_t inA1, inA2;
  188. q31_t inB1, inB2;
  189. pA = read_and_pad(pA, &inA1, &inA2);
  190. inB1 = arm_nn_read_q15x2_ia((const q15_t **)&pB);
  191. sum = __SMLAD(inA1, inB1, sum);
  192. inB2 = arm_nn_read_q15x2_ia((const q15_t **)&pB);
  193. sum = __SMLAD(inA2, inB2, sum);
  194. colCnt--;
  195. }
  196. colCnt = 3 * dim_kernel * dim_kernel & 0x3;
  197. while (colCnt)
  198. {
  199. q7_t inA1 = *pA++;
  200. q15_t inB1 = *pB++;
  201. sum += inA1 * inB1;
  202. colCnt--;
  203. }
  204. *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
  205. }
  206. }
  207. #else
  208. /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
  209. uint16_t i, j, k, l, m, n;
  210. int conv_out;
  211. signed char in_row, in_col;
  212. // check if number of input channels is 3
  213. if (ch_im_in != 3)
  214. {
  215. return ARM_MATH_SIZE_MISMATCH;
  216. }
  217. for (i = 0; i < ch_im_out; i++)
  218. {
  219. for (j = 0; j < dim_im_out; j++)
  220. {
  221. for (k = 0; k < dim_im_out; k++)
  222. {
  223. conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
  224. for (m = 0; m < dim_kernel; m++)
  225. {
  226. for (n = 0; n < dim_kernel; n++)
  227. {
  228. /* if-for implementation */
  229. in_row = stride * j + m - padding;
  230. in_col = stride * k + n - padding;
  231. if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
  232. {
  233. for (l = 0; l < ch_im_in; l++)
  234. {
  235. conv_out +=
  236. Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
  237. l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
  238. n) * ch_im_in + l];
  239. }
  240. }
  241. }
  242. }
  243. Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
  244. }
  245. }
  246. }
  247. #endif /* ARM_MATH_DSP */
  248. /* Return to application */
  249. return (ARM_MATH_SUCCESS);
  250. }
  251. /**
  252. * @} end of NNConv group
  253. */