UnaryTestsF16.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. #include "UnaryTestsF16.h"
  2. #include <stdio.h>
  3. #include "Error.h"
  4. #define SNR_THRESHOLD 59
  5. /*
  6. Reference patterns are generated with
  7. a double precision computation.
  8. */
  9. #define REL_ERROR (1.1e-3)
  10. #define ABS_ERROR (1.1e-3)
  11. /*
  12. Comparisons for inverse
  13. */
  14. /* Not very accurate for big matrix.
  15. But big matrix needed for checking the vectorized code */
  16. #define SNR_THRESHOLD_INV 45
  17. #define REL_ERROR_INV (3.0e-2)
  18. #define ABS_ERROR_INV (3.0e-2)
  19. #define REL_ERROR_SOLVE (6.0e-3)
  20. #define ABS_ERROR_SOLVE (6.0e-2)
  21. /*
  22. Comparison for Cholesky
  23. */
  24. #define SNR_THRESHOLD_CHOL 45
  25. #define REL_ERROR_CHOL (3.0e-3)
  26. #define ABS_ERROR_CHOL (3.0e-2)
  27. /* Upper bound of maximum matrix dimension used by Python */
  28. #define MAXMATRIXDIM 40
  29. #define LOADDATA2() \
  30. const float16_t *inp1=input1.ptr(); \
  31. const float16_t *inp2=input2.ptr(); \
  32. \
  33. float16_t *ap=a.ptr(); \
  34. float16_t *bp=b.ptr(); \
  35. \
  36. float16_t *outp=output.ptr(); \
  37. int16_t *dimsp = dims.ptr(); \
  38. int nbMatrixes = dims.nbSamples() >> 1;\
  39. int rows,columns; \
  40. int i;
  41. #define LOADDATA1() \
  42. const float16_t *inp1=input1.ptr(); \
  43. \
  44. float16_t *ap=a.ptr(); \
  45. \
  46. float16_t *outp=output.ptr(); \
  47. int16_t *dimsp = dims.ptr(); \
  48. int nbMatrixes = dims.nbSamples() >> 1;\
  49. int rows,columns; \
  50. int i;
  51. #define PREPAREDATA2() \
  52. in1.numRows=rows; \
  53. in1.numCols=columns; \
  54. memcpy((void*)ap,(const void*)inp1,sizeof(float16_t)*rows*columns);\
  55. in1.pData = ap; \
  56. \
  57. in2.numRows=rows; \
  58. in2.numCols=columns; \
  59. memcpy((void*)bp,(const void*)inp2,sizeof(float16_t)*rows*columns);\
  60. in2.pData = bp; \
  61. \
  62. out.numRows=rows; \
  63. out.numCols=columns; \
  64. out.pData = outp;
  65. #define PREPAREDATA1(TRANSPOSED) \
  66. in1.numRows=rows; \
  67. in1.numCols=columns; \
  68. memcpy((void*)ap,(const void*)inp1,sizeof(float16_t)*rows*columns);\
  69. in1.pData = ap; \
  70. \
  71. if (TRANSPOSED) \
  72. { \
  73. out.numRows=columns; \
  74. out.numCols=rows; \
  75. } \
  76. else \
  77. { \
  78. out.numRows=rows; \
  79. out.numCols=columns; \
  80. } \
  81. out.pData = outp;
  82. #define PREPAREDATA1C(TRANSPOSED) \
  83. in1.numRows=rows; \
  84. in1.numCols=columns; \
  85. memcpy((void*)ap,(const void*)inp1,2*sizeof(float16_t)*rows*columns);\
  86. in1.pData = ap; \
  87. \
  88. if (TRANSPOSED) \
  89. { \
  90. out.numRows=columns; \
  91. out.numCols=rows; \
  92. } \
  93. else \
  94. { \
  95. out.numRows=rows; \
  96. out.numCols=columns; \
  97. } \
  98. out.pData = outp;
  99. #define LOADVECDATA2() \
  100. const float16_t *inp1=input1.ptr(); \
  101. const float16_t *inp2=input2.ptr(); \
  102. \
  103. float16_t *ap=a.ptr(); \
  104. float16_t *bp=b.ptr(); \
  105. \
  106. float16_t *outp=output.ptr(); \
  107. int16_t *dimsp = dims.ptr(); \
  108. int nbMatrixes = dims.nbSamples() / 2;\
  109. int rows,internal; \
  110. int i;
  111. #define PREPAREVECDATA2() \
  112. in1.numRows=rows; \
  113. in1.numCols=internal; \
  114. memcpy((void*)ap,(const void*)inp1,2*sizeof(float16_t)*rows*internal);\
  115. in1.pData = ap; \
  116. \
  117. memcpy((void*)bp,(const void*)inp2,2*sizeof(float16_t)*internal);
  118. void UnaryTestsF16::test_mat_vec_mult_f16()
  119. {
  120. LOADVECDATA2();
  121. for(i=0;i < nbMatrixes ; i ++)
  122. {
  123. rows = *dimsp++;
  124. internal = *dimsp++;
  125. PREPAREVECDATA2();
  126. arm_mat_vec_mult_f16(&this->in1, bp, outp);
  127. outp += rows ;
  128. }
  129. ASSERT_EMPTY_TAIL(output);
  130. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  131. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  132. }
  133. void UnaryTestsF16::test_mat_add_f16()
  134. {
  135. LOADDATA2();
  136. arm_status status;
  137. for(i=0;i < nbMatrixes ; i ++)
  138. {
  139. rows = *dimsp++;
  140. columns = *dimsp++;
  141. PREPAREDATA2();
  142. status=arm_mat_add_f16(&this->in1,&this->in2,&this->out);
  143. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  144. outp += (rows * columns);
  145. }
  146. ASSERT_EMPTY_TAIL(output);
  147. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  148. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  149. }
  150. void UnaryTestsF16::test_mat_sub_f16()
  151. {
  152. LOADDATA2();
  153. arm_status status;
  154. for(i=0;i < nbMatrixes ; i ++)
  155. {
  156. rows = *dimsp++;
  157. columns = *dimsp++;
  158. PREPAREDATA2();
  159. status=arm_mat_sub_f16(&this->in1,&this->in2,&this->out);
  160. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  161. outp += (rows * columns);
  162. }
  163. ASSERT_EMPTY_TAIL(output);
  164. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  165. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  166. }
  167. void UnaryTestsF16::test_mat_scale_f16()
  168. {
  169. LOADDATA1();
  170. arm_status status;
  171. for(i=0;i < nbMatrixes ; i ++)
  172. {
  173. rows = *dimsp++;
  174. columns = *dimsp++;
  175. PREPAREDATA1(false);
  176. status=arm_mat_scale_f16(&this->in1,0.5f,&this->out);
  177. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  178. outp += (rows * columns);
  179. }
  180. ASSERT_EMPTY_TAIL(output);
  181. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  182. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  183. }
  184. void UnaryTestsF16::test_mat_trans_f16()
  185. {
  186. LOADDATA1();
  187. arm_status status;
  188. for(i=0;i < nbMatrixes ; i ++)
  189. {
  190. rows = *dimsp++;
  191. columns = *dimsp++;
  192. PREPAREDATA1(true);
  193. status=arm_mat_trans_f16(&this->in1,&this->out);
  194. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  195. outp += (rows * columns);
  196. }
  197. ASSERT_EMPTY_TAIL(output);
  198. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  199. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  200. }
  201. void UnaryTestsF16::test_mat_cmplx_trans_f16()
  202. {
  203. LOADDATA1();
  204. arm_status status;
  205. for(i=0;i < nbMatrixes ; i ++)
  206. {
  207. rows = *dimsp++;
  208. columns = *dimsp++;
  209. PREPAREDATA1C(true);
  210. status=arm_mat_cmplx_trans_f16(&this->in1,&this->out);
  211. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  212. outp += 2*(rows * columns);
  213. }
  214. ASSERT_EMPTY_TAIL(output);
  215. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  216. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  217. }
  218. void UnaryTestsF16::test_mat_inverse_f16()
  219. {
  220. const float16_t *inp1=input1.ptr();
  221. float16_t *ap=a.ptr();
  222. float16_t *outp=output.ptr();
  223. int16_t *dimsp = dims.ptr();
  224. int nbMatrixes = dims.nbSamples();
  225. int rows,columns;
  226. int i;
  227. arm_status status;
  228. for(i=0;i < nbMatrixes ; i ++)
  229. {
  230. rows = *dimsp++;
  231. columns = rows;
  232. PREPAREDATA1(false);
  233. status=arm_mat_inverse_f16(&this->in1,&this->out);
  234. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  235. outp += (rows * columns);
  236. inp1 += (rows * columns);
  237. }
  238. ASSERT_EMPTY_TAIL(output);
  239. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD_INV);
  240. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR_INV,REL_ERROR_INV);
  241. }
  242. void UnaryTestsF16::test_mat_cholesky_dpo_f16()
  243. {
  244. float16_t *ap=a.ptr();
  245. const float16_t *inp1=input1.ptr();
  246. float16_t *outp=output.ptr();
  247. int16_t *dimsp = dims.ptr();
  248. int nbMatrixes = dims.nbSamples();
  249. int rows,columns;
  250. int i;
  251. arm_status status;
  252. for(i=0;i < nbMatrixes ; i ++)
  253. {
  254. rows = *dimsp++;
  255. columns = rows;
  256. PREPAREDATA1(false);
  257. status=arm_mat_cholesky_f16(&this->in1,&this->out);
  258. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  259. outp += (rows * columns);
  260. inp1 += (rows * columns);
  261. }
  262. ASSERT_EMPTY_TAIL(output);
  263. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD_CHOL);
  264. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL);
  265. }
  266. void UnaryTestsF16::test_solve_upper_triangular_f16()
  267. {
  268. float16_t *ap=a.ptr();
  269. const float16_t *inp1=input1.ptr();
  270. float16_t *bp=b.ptr();
  271. const float16_t *inp2=input2.ptr();
  272. float16_t *outp=output.ptr();
  273. int16_t *dimsp = dims.ptr();
  274. int nbMatrixes = dims.nbSamples();
  275. int rows,columns;
  276. int i;
  277. arm_status status;
  278. for(i=0;i < nbMatrixes ; i ++)
  279. {
  280. rows = *dimsp++;
  281. columns = rows;
  282. PREPAREDATA2();
  283. status=arm_mat_solve_upper_triangular_f16(&this->in1,&this->in2,&this->out);
  284. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  285. outp += (rows * columns);
  286. inp1 += (rows * columns);
  287. inp2 += (rows * columns);
  288. }
  289. ASSERT_EMPTY_TAIL(output);
  290. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  291. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_SOLVE,REL_ERROR_SOLVE);
  292. }
  293. void UnaryTestsF16::test_solve_lower_triangular_f16()
  294. {
  295. float16_t *ap=a.ptr();
  296. const float16_t *inp1=input1.ptr();
  297. float16_t *bp=b.ptr();
  298. const float16_t *inp2=input2.ptr();
  299. float16_t *outp=output.ptr();
  300. int16_t *dimsp = dims.ptr();
  301. int nbMatrixes = dims.nbSamples();
  302. int rows,columns;
  303. int i;
  304. arm_status status;
  305. for(i=0;i < nbMatrixes ; i ++)
  306. {
  307. rows = *dimsp++;
  308. columns = rows;
  309. PREPAREDATA2();
  310. status=arm_mat_solve_lower_triangular_f16(&this->in1,&this->in2,&this->out);
  311. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  312. outp += (rows * columns);
  313. inp1 += (rows * columns);
  314. inp2 += (rows * columns);
  315. }
  316. ASSERT_EMPTY_TAIL(output);
  317. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  318. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_SOLVE,REL_ERROR_SOLVE);
  319. }
  320. void UnaryTestsF16::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
  321. {
  322. (void)params;
  323. switch(id)
  324. {
  325. case TEST_MAT_ADD_F16_1:
  326. input1.reload(UnaryTestsF16::INPUTS1_F16_ID,mgr);
  327. input2.reload(UnaryTestsF16::INPUTS2_F16_ID,mgr);
  328. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  329. ref.reload(UnaryTestsF16::REFADD1_F16_ID,mgr);
  330. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  331. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  332. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPB_F16_ID,mgr);
  333. break;
  334. case TEST_MAT_SUB_F16_2:
  335. input1.reload(UnaryTestsF16::INPUTS1_F16_ID,mgr);
  336. input2.reload(UnaryTestsF16::INPUTS2_F16_ID,mgr);
  337. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  338. ref.reload(UnaryTestsF16::REFSUB1_F16_ID,mgr);
  339. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  340. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  341. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPB_F16_ID,mgr);
  342. break;
  343. case TEST_MAT_SCALE_F16_3:
  344. input1.reload(UnaryTestsF16::INPUTS1_F16_ID,mgr);
  345. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  346. ref.reload(UnaryTestsF16::REFSCALE1_F16_ID,mgr);
  347. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  348. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  349. break;
  350. case TEST_MAT_TRANS_F16_4:
  351. input1.reload(UnaryTestsF16::INPUTS1_F16_ID,mgr);
  352. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  353. ref.reload(UnaryTestsF16::REFTRANS1_F16_ID,mgr);
  354. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  355. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  356. break;
  357. case TEST_MAT_INVERSE_F16_5:
  358. input1.reload(UnaryTestsF16::INPUTSINV_F16_ID,mgr);
  359. dims.reload(UnaryTestsF16::DIMSINVERT1_S16_ID,mgr);
  360. ref.reload(UnaryTestsF16::REFINV1_F16_ID,mgr);
  361. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  362. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  363. break;
  364. case TEST_MAT_VEC_MULT_F16_6:
  365. input1.reload(UnaryTestsF16::INPUTS1_F16_ID,mgr);
  366. input2.reload(UnaryTestsF16::INPUTVEC1_F16_ID,mgr);
  367. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  368. ref.reload(UnaryTestsF16::REFVECMUL1_F16_ID,mgr);
  369. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  370. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  371. b.create(MAXMATRIXDIM,UnaryTestsF16::TMPB_F16_ID,mgr);
  372. break;
  373. case TEST_MAT_CMPLX_TRANS_F16_7:
  374. input1.reload(UnaryTestsF16::INPUTSC1_F16_ID,mgr);
  375. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  376. ref.reload(UnaryTestsF16::REFTRANSC1_F16_ID,mgr);
  377. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  378. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  379. break;
  380. case TEST_MAT_CHOLESKY_DPO_F16_8:
  381. input1.reload(UnaryTestsF16::INPUTSCHOLESKY1_DPO_F16_ID,mgr);
  382. dims.reload(UnaryTestsF16::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  383. ref.reload(UnaryTestsF16::REFCHOLESKY1_DPO_F16_ID,mgr);
  384. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  385. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  386. break;
  387. case TEST_SOLVE_UPPER_TRIANGULAR_F16_9:
  388. input1.reload(UnaryTestsF16::INPUT_UT_DPO_F16_ID,mgr);
  389. dims.reload(UnaryTestsF16::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  390. input2.reload(UnaryTestsF16::INPUT_RNDA_DPO_F16_ID,mgr);
  391. ref.reload(UnaryTestsF16::REF_UTINV_DPO_F16_ID,mgr);
  392. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  393. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  394. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPB_F16_ID,mgr);
  395. break;
  396. case TEST_SOLVE_LOWER_TRIANGULAR_F16_10:
  397. input1.reload(UnaryTestsF16::INPUT_LT_DPO_F16_ID,mgr);
  398. dims.reload(UnaryTestsF16::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  399. input2.reload(UnaryTestsF16::INPUT_RNDA_DPO_F16_ID,mgr);
  400. ref.reload(UnaryTestsF16::REF_LTINV_DPO_F16_ID,mgr);
  401. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  402. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  403. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPB_F16_ID,mgr);
  404. break;
  405. }
  406. }
  407. void UnaryTestsF16::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
  408. {
  409. (void)id;
  410. //output.dump(mgr);
  411. (void)mgr;
  412. }