UnaryTestsF32.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837
  1. #include "UnaryTestsF32.h"
  2. #include "Error.h"
  3. #define SNR_THRESHOLD 120
  4. /*
  5. Reference patterns are generated with
  6. a double precision computation.
  7. */
  8. #define REL_ERROR (1.0e-5)
  9. #define ABS_ERROR (1.0e-5)
  10. /*
  11. Comparisons for inverse
  12. */
  13. /* Not very accurate for big matrix.
  14. But big matrix needed for checking the vectorized code */
  15. #define SNR_THRESHOLD_INV 67
  16. #define REL_ERROR_INV (1.0e-3)
  17. #define ABS_ERROR_INV (1.0e-3)
  18. /*
  19. Comparison for Cholesky
  20. */
  21. #define SNR_THRESHOLD_CHOL 92
  22. #define REL_ERROR_CHOL (1.0e-5)
  23. #define ABS_ERROR_CHOL (5.0e-4)
  24. /* LDLT comparison */
  25. #define REL_ERROR_LDLT (1e-5)
  26. #define ABS_ERROR_LDLT (1e-5)
  27. #define REL_ERROR_LDLT_SPDO (1e-5)
  28. #define ABS_ERROR_LDLT_SDPO (2e-1)
  29. /* Upper bound of maximum matrix dimension used by Python */
  30. #define MAXMATRIXDIM 40
  31. #define LOADDATA2() \
  32. const float32_t *inp1=input1.ptr(); \
  33. const float32_t *inp2=input2.ptr(); \
  34. \
  35. float32_t *ap=a.ptr(); \
  36. float32_t *bp=b.ptr(); \
  37. \
  38. float32_t *outp=output.ptr(); \
  39. int16_t *dimsp = dims.ptr(); \
  40. int nbMatrixes = dims.nbSamples() >> 1;\
  41. int rows,columns; \
  42. int i;
  43. #define LOADDATA1() \
  44. const float32_t *inp1=input1.ptr(); \
  45. \
  46. float32_t *ap=a.ptr(); \
  47. \
  48. float32_t *outp=output.ptr(); \
  49. int16_t *dimsp = dims.ptr(); \
  50. int nbMatrixes = dims.nbSamples() >> 1;\
  51. int rows,columns; \
  52. int i;
  53. #define PREPAREDATA2() \
  54. in1.numRows=rows; \
  55. in1.numCols=columns; \
  56. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  57. in1.pData = ap; \
  58. \
  59. in2.numRows=rows; \
  60. in2.numCols=columns; \
  61. memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\
  62. in2.pData = bp; \
  63. \
  64. out.numRows=rows; \
  65. out.numCols=columns; \
  66. out.pData = outp;
  67. #define PREPAREDATA1(TRANSPOSED) \
  68. in1.numRows=rows; \
  69. in1.numCols=columns; \
  70. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  71. in1.pData = ap; \
  72. \
  73. if (TRANSPOSED) \
  74. { \
  75. out.numRows=columns; \
  76. out.numCols=rows; \
  77. } \
  78. else \
  79. { \
  80. out.numRows=rows; \
  81. out.numCols=columns; \
  82. } \
  83. out.pData = outp;
  84. #define PREPAREDATA1C(TRANSPOSED) \
  85. in1.numRows=rows; \
  86. in1.numCols=columns; \
  87. memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*columns);\
  88. in1.pData = ap; \
  89. \
  90. if (TRANSPOSED) \
  91. { \
  92. out.numRows=columns; \
  93. out.numCols=rows; \
  94. } \
  95. else \
  96. { \
  97. out.numRows=rows; \
  98. out.numCols=columns; \
  99. } \
  100. out.pData = outp;
  101. #define LOADVECDATA2() \
  102. const float32_t *inp1=input1.ptr(); \
  103. const float32_t *inp2=input2.ptr(); \
  104. \
  105. float32_t *ap=a.ptr(); \
  106. float32_t *bp=b.ptr(); \
  107. \
  108. float32_t *outp=output.ptr(); \
  109. int16_t *dimsp = dims.ptr(); \
  110. int nbMatrixes = dims.nbSamples() / 2;\
  111. int rows,internal; \
  112. int i;
  113. #define PREPAREVECDATA2() \
  114. in1.numRows=rows; \
  115. in1.numCols=internal; \
  116. memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*internal);\
  117. in1.pData = ap; \
  118. \
  119. memcpy((void*)bp,(const void*)inp2,2*sizeof(float32_t)*internal);
  120. #define PREPAREDATALL1() \
  121. in1.numRows=rows; \
  122. in1.numCols=columns; \
  123. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  124. in1.pData = ap; \
  125. \
  126. outll.numRows=rows; \
  127. outll.numCols=columns; \
  128. \
  129. outll.pData = outllp;
  130. #define SWAP_ROWS(A,i,j) \
  131. for(int w=0;w < n; w++) \
  132. { \
  133. float64_t tmp; \
  134. tmp = A[i*n + w]; \
  135. A[i*n + w] = A[j*n + w];\
  136. A[j*n + w] = tmp; \
  137. }
  138. void UnaryTestsF32::test_mat_vec_mult_f32()
  139. {
  140. LOADVECDATA2();
  141. for(i=0;i < nbMatrixes ; i ++)
  142. {
  143. rows = *dimsp++;
  144. internal = *dimsp++;
  145. PREPAREVECDATA2();
  146. arm_mat_vec_mult_f32(&this->in1, bp, outp);
  147. outp += rows ;
  148. }
  149. ASSERT_EMPTY_TAIL(output);
  150. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  151. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  152. }
  153. void UnaryTestsF32::test_mat_add_f32()
  154. {
  155. LOADDATA2();
  156. arm_status status;
  157. for(i=0;i < nbMatrixes ; i ++)
  158. {
  159. rows = *dimsp++;
  160. columns = *dimsp++;
  161. PREPAREDATA2();
  162. status=arm_mat_add_f32(&this->in1,&this->in2,&this->out);
  163. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  164. outp += (rows * columns);
  165. }
  166. ASSERT_EMPTY_TAIL(output);
  167. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  168. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  169. }
  170. void UnaryTestsF32::test_mat_sub_f32()
  171. {
  172. LOADDATA2();
  173. arm_status status;
  174. for(i=0;i < nbMatrixes ; i ++)
  175. {
  176. rows = *dimsp++;
  177. columns = *dimsp++;
  178. PREPAREDATA2();
  179. status=arm_mat_sub_f32(&this->in1,&this->in2,&this->out);
  180. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  181. outp += (rows * columns);
  182. }
  183. ASSERT_EMPTY_TAIL(output);
  184. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  185. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  186. }
  187. void UnaryTestsF32::test_mat_scale_f32()
  188. {
  189. LOADDATA1();
  190. arm_status status;
  191. for(i=0;i < nbMatrixes ; i ++)
  192. {
  193. rows = *dimsp++;
  194. columns = *dimsp++;
  195. PREPAREDATA1(false);
  196. status=arm_mat_scale_f32(&this->in1,0.5f,&this->out);
  197. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  198. outp += (rows * columns);
  199. }
  200. ASSERT_EMPTY_TAIL(output);
  201. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  202. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  203. }
  204. void UnaryTestsF32::test_mat_trans_f32()
  205. {
  206. LOADDATA1();
  207. arm_status status;
  208. for(i=0;i < nbMatrixes ; i ++)
  209. {
  210. rows = *dimsp++;
  211. columns = *dimsp++;
  212. PREPAREDATA1(true);
  213. status=arm_mat_trans_f32(&this->in1,&this->out);
  214. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  215. outp += (rows * columns);
  216. }
  217. ASSERT_EMPTY_TAIL(output);
  218. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  219. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  220. }
  221. void UnaryTestsF32::test_mat_cmplx_trans_f32()
  222. {
  223. LOADDATA1();
  224. arm_status status;
  225. for(i=0;i < nbMatrixes ; i ++)
  226. {
  227. rows = *dimsp++;
  228. columns = *dimsp++;
  229. PREPAREDATA1C(true);
  230. status=arm_mat_cmplx_trans_f32(&this->in1,&this->out);
  231. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  232. outp += 2*(rows * columns);
  233. }
  234. ASSERT_EMPTY_TAIL(output);
  235. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  236. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  237. }
  238. void UnaryTestsF32::test_mat_inverse_f32()
  239. {
  240. const float32_t *inp1=input1.ptr();
  241. float32_t *ap=a.ptr();
  242. float32_t *outp=output.ptr();
  243. int16_t *dimsp = dims.ptr();
  244. int nbMatrixes = dims.nbSamples();
  245. int rows,columns;
  246. int i;
  247. arm_status status;
  248. for(i=0;i < nbMatrixes ; i ++)
  249. {
  250. rows = *dimsp++;
  251. columns = rows;
  252. PREPAREDATA1(false);
  253. status=arm_mat_inverse_f32(&this->in1,&this->out);
  254. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  255. outp += (rows * columns);
  256. inp1 += (rows * columns);
  257. }
  258. ASSERT_EMPTY_TAIL(output);
  259. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_INV);
  260. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR_INV,REL_ERROR_INV);
  261. }
  262. void UnaryTestsF32::test_mat_cholesky_dpo_f32()
  263. {
  264. float32_t *ap=a.ptr();
  265. const float32_t *inp1=input1.ptr();
  266. float32_t *outp=output.ptr();
  267. int16_t *dimsp = dims.ptr();
  268. int nbMatrixes = dims.nbSamples();
  269. int rows,columns;
  270. int i;
  271. arm_status status;
  272. for(i=0;i < nbMatrixes ; i ++)
  273. {
  274. rows = *dimsp++;
  275. columns = rows;
  276. PREPAREDATA1(false);
  277. status=arm_mat_cholesky_f32(&this->in1,&this->out);
  278. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  279. outp += (rows * columns);
  280. inp1 += (rows * columns);
  281. }
  282. ASSERT_EMPTY_TAIL(output);
  283. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_CHOL);
  284. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL);
  285. }
  286. void UnaryTestsF32::test_solve_upper_triangular_f32()
  287. {
  288. float32_t *ap=a.ptr();
  289. const float32_t *inp1=input1.ptr();
  290. float32_t *bp=b.ptr();
  291. const float32_t *inp2=input2.ptr();
  292. float32_t *outp=output.ptr();
  293. int16_t *dimsp = dims.ptr();
  294. int nbMatrixes = dims.nbSamples();
  295. int rows,columns;
  296. int i;
  297. arm_status status;
  298. for(i=0;i < nbMatrixes ; i ++)
  299. {
  300. rows = *dimsp++;
  301. columns = rows;
  302. PREPAREDATA2();
  303. status=arm_mat_solve_upper_triangular_f32(&this->in1,&this->in2,&this->out);
  304. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  305. outp += (rows * columns);
  306. inp1 += (rows * columns);
  307. inp2 += (rows * columns);
  308. }
  309. ASSERT_EMPTY_TAIL(output);
  310. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  311. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  312. }
  313. void UnaryTestsF32::test_solve_lower_triangular_f32()
  314. {
  315. float32_t *ap=a.ptr();
  316. const float32_t *inp1=input1.ptr();
  317. float32_t *bp=b.ptr();
  318. const float32_t *inp2=input2.ptr();
  319. float32_t *outp=output.ptr();
  320. int16_t *dimsp = dims.ptr();
  321. int nbMatrixes = dims.nbSamples();
  322. int rows,columns;
  323. int i;
  324. arm_status status;
  325. for(i=0;i < nbMatrixes ; i ++)
  326. {
  327. rows = *dimsp++;
  328. columns = rows;
  329. PREPAREDATA2();
  330. status=arm_mat_solve_lower_triangular_f32(&this->in1,&this->in2,&this->out);
  331. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  332. outp += (rows * columns);
  333. inp1 += (rows * columns);
  334. inp2 += (rows * columns);
  335. }
  336. ASSERT_EMPTY_TAIL(output);
  337. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  338. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  339. }
  340. static void trans_f64(const float64_t *src, float64_t *dst, int n)
  341. {
  342. for(int r=0; r<n ; r++)
  343. {
  344. for(int c=0; c<n ; c++)
  345. {
  346. dst[c*n+r] = src[r*n+c];
  347. }
  348. }
  349. }
  350. static void trans_f32_f64(const float32_t *src, float64_t *dst, int n)
  351. {
  352. for(int r=0; r<n ; r++)
  353. {
  354. for(int c=0; c<n ; c++)
  355. {
  356. dst[c*n+r] = (float64_t)src[r*n+c];
  357. }
  358. }
  359. }
  360. static void mult_f32_f64(const float32_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  361. {
  362. for(int r=0; r<n ; r++)
  363. {
  364. for(int c=0; c<n ; c++)
  365. {
  366. float64_t sum=0.0;
  367. for(int k=0; k < n ; k++)
  368. {
  369. sum += (float64_t)srcA[r*n+k] * srcB[k*n+c];
  370. }
  371. dst[r*n+c] = sum;
  372. }
  373. }
  374. }
  375. static void mult_f64_f64(const float64_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  376. {
  377. for(int r=0; r<n ; r++)
  378. {
  379. for(int c=0; c<n ; c++)
  380. {
  381. float64_t sum=0.0;
  382. for(int k=0; k < n ; k++)
  383. {
  384. sum += srcA[r*n+k] * srcB[k*n+c];
  385. }
  386. dst[r*n+c] = sum;
  387. }
  388. }
  389. }
  390. void UnaryTestsF32::compute_ldlt_error(const int n,const int16_t *outpp)
  391. {
  392. float64_t *tmpa = tmpapat.ptr() ;
  393. float64_t *tmpb = tmpbpat.ptr() ;
  394. float64_t *tmpc = tmpcpat.ptr() ;
  395. /* Compute P A P^t */
  396. // Create identiy matrix
  397. for(int r=0; r < n; r++)
  398. {
  399. for(int c=0; c < n; c++)
  400. {
  401. if (r == c)
  402. {
  403. tmpa[r*n+c] = 1.0;
  404. }
  405. else
  406. {
  407. tmpa[r*n+c] = 0.0;
  408. }
  409. }
  410. }
  411. // Create permutation matrix
  412. for(int r=0;r < n; r++)
  413. {
  414. SWAP_ROWS(tmpa,r,outpp[r]);
  415. }
  416. trans_f64((const float64_t*)tmpa,tmpb,n);
  417. mult_f32_f64((const float32_t*)this->in1.pData,(const float64_t*)tmpb,tmpc,n);
  418. mult_f64_f64((const float64_t*)tmpa,(const float64_t*)tmpc,outa,n);
  419. /* Compute L D L^t */
  420. trans_f32_f64((const float32_t*)this->outll.pData,tmpc,n);
  421. mult_f32_f64((const float32_t*)this->outd.pData,(const float64_t*)tmpc,tmpa,n);
  422. mult_f32_f64((const float32_t*)this->outll.pData,(const float64_t*)tmpa,outb,n);
  423. }
  424. void UnaryTestsF32::test_mat_ldl_f32()
  425. {
  426. float32_t *ap=a.ptr();
  427. const float32_t *inp1=input1.ptr();
  428. float32_t *outllp=outputll.ptr();
  429. float32_t *outdp=outputd.ptr();
  430. int16_t *outpp=outputp.ptr();
  431. outa=outputa.ptr();
  432. outb=outputb.ptr();
  433. int16_t *dimsp = dims.ptr();
  434. int nbMatrixes = dims.nbSamples();
  435. int rows,columns;
  436. int i;
  437. arm_status status;
  438. int nb=0;
  439. for(i=0;i < nbMatrixes ; i ++)
  440. {
  441. rows = *dimsp++;
  442. columns = rows;
  443. PREPAREDATALL1();
  444. outd.numRows=rows;
  445. outd.numCols=columns;
  446. outd.pData=outdp;
  447. memset(outpp,0,rows*sizeof(uint16_t));
  448. memset(outdp,0,columns*rows*sizeof(float32_t));
  449. status=arm_mat_ldlt_f32(&this->in1,&this->outll,&this->outd,(uint16_t*)outpp);
  450. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  451. compute_ldlt_error(rows,outpp);
  452. outllp += (rows * columns);
  453. outdp += (rows * columns);
  454. outpp += rows;
  455. outa += (rows * columns);
  456. outb +=(rows * columns);
  457. inp1 += (rows * columns);
  458. nb += (rows * columns);
  459. }
  460. ASSERT_EMPTY_TAIL(outputll);
  461. ASSERT_EMPTY_TAIL(outputd);
  462. ASSERT_EMPTY_TAIL(outputp);
  463. ASSERT_EMPTY_TAIL(outputa);
  464. ASSERT_EMPTY_TAIL(outputb);
  465. ASSERT_CLOSE_ERROR(outputa,outputb,snrAbs,snrRel);
  466. }
  467. void UnaryTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
  468. {
  469. (void)params;
  470. switch(id)
  471. {
  472. case TEST_MAT_ADD_F32_1:
  473. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  474. input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
  475. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  476. ref.reload(UnaryTestsF32::REFADD1_F32_ID,mgr);
  477. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  478. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  479. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  480. break;
  481. case TEST_MAT_SUB_F32_2:
  482. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  483. input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
  484. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  485. ref.reload(UnaryTestsF32::REFSUB1_F32_ID,mgr);
  486. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  487. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  488. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  489. break;
  490. case TEST_MAT_SCALE_F32_3:
  491. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  492. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  493. ref.reload(UnaryTestsF32::REFSCALE1_F32_ID,mgr);
  494. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  495. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  496. break;
  497. case TEST_MAT_TRANS_F32_4:
  498. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  499. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  500. ref.reload(UnaryTestsF32::REFTRANS1_F32_ID,mgr);
  501. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  502. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  503. break;
  504. case TEST_MAT_INVERSE_F32_5:
  505. input1.reload(UnaryTestsF32::INPUTSINV_F32_ID,mgr);
  506. dims.reload(UnaryTestsF32::DIMSINVERT1_S16_ID,mgr);
  507. ref.reload(UnaryTestsF32::REFINV1_F32_ID,mgr);
  508. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  509. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  510. break;
  511. case TEST_MAT_VEC_MULT_F32_6:
  512. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  513. input2.reload(UnaryTestsF32::INPUTVEC1_F32_ID,mgr);
  514. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  515. ref.reload(UnaryTestsF32::REFVECMUL1_F32_ID,mgr);
  516. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  517. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  518. b.create(MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  519. break;
  520. case TEST_MAT_CMPLX_TRANS_F32_7:
  521. input1.reload(UnaryTestsF32::INPUTSC1_F32_ID,mgr);
  522. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  523. ref.reload(UnaryTestsF32::REFTRANSC1_F32_ID,mgr);
  524. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  525. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  526. break;
  527. case TEST_MAT_CHOLESKY_DPO_F32_8:
  528. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
  529. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  530. ref.reload(UnaryTestsF32::REFCHOLESKY1_DPO_F32_ID,mgr);
  531. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  532. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  533. break;
  534. case TEST_SOLVE_UPPER_TRIANGULAR_F32_9:
  535. input1.reload(UnaryTestsF32::INPUT_UT_DPO_F32_ID,mgr);
  536. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  537. input2.reload(UnaryTestsF32::INPUT_RNDA_DPO_F32_ID,mgr);
  538. ref.reload(UnaryTestsF32::REF_UTINV_DPO_F32_ID,mgr);
  539. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  540. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  541. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  542. break;
  543. case TEST_SOLVE_LOWER_TRIANGULAR_F32_10:
  544. input1.reload(UnaryTestsF32::INPUT_LT_DPO_F32_ID,mgr);
  545. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  546. input2.reload(UnaryTestsF32::INPUT_RNDA_DPO_F32_ID,mgr);
  547. ref.reload(UnaryTestsF32::REF_LTINV_DPO_F32_ID,mgr);
  548. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  549. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  550. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  551. break;
  552. case TEST_MAT_LDL_F32_11:
  553. // Definite positive test
  554. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
  555. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  556. outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
  557. outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
  558. outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
  559. outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
  560. outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
  561. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  562. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
  563. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
  564. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
  565. this->snrRel=REL_ERROR_LDLT;
  566. this->snrAbs=ABS_ERROR_LDLT;
  567. break;
  568. case TEST_MAT_LDL_F32_12:
  569. // Semi definite positive test
  570. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_SDPO_F32_ID,mgr);
  571. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_SDPO_S16_ID,mgr);
  572. outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
  573. outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
  574. outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
  575. outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
  576. outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
  577. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  578. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
  579. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
  580. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
  581. this->snrRel=REL_ERROR_LDLT_SPDO;
  582. this->snrAbs=ABS_ERROR_LDLT_SDPO;
  583. break;
  584. }
  585. }
  586. void UnaryTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
  587. {
  588. (void)id;
  589. (void)mgr;
  590. switch(id)
  591. {
  592. case TEST_MAT_LDL_F32_11:
  593. //outputll.dump(mgr);
  594. break;
  595. }
  596. //output.dump(mgr);
  597. }