| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_ldl_f32.c
- * Description: Floating-point LDL decomposition
- *
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2020 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "dsp/matrix_functions.h"
- #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
- /// @private
- #define SWAP_ROWS(A,i,j) \
- { \
- int cnt = n; \
- \
- for(int w=0;w < n; w+=4) \
- { \
- f32x4_t tmpa,tmpb; \
- mve_pred16_t p0 = vctp32q(cnt); \
- \
- tmpa=vldrwq_z_f32(&A[i*n + w],p0);\
- tmpb=vldrwq_z_f32(&A[j*n + w],p0);\
- \
- vstrwq_p(&A[i*n + w], tmpb, p0); \
- vstrwq_p(&A[j*n + w], tmpa, p0); \
- \
- cnt -= 4; \
- } \
- }
- /// @private
- #define SWAP_COLS(A,i,j) \
- for(int w=0;w < n; w++) \
- { \
- float32_t tmp; \
- tmp = A[w*n + i]; \
- A[w*n + i] = A[w*n + j];\
- A[w*n + j] = tmp; \
- }
- /**
- @ingroup groupMatrix
- */
- /**
- @addtogroup MatrixChol
- @{
- */
- /**
- * @brief Floating-point LDL^t decomposition of positive semi-definite matrix.
- * @param[in] pSrc points to the instance of the input floating-point matrix structure.
- * @param[out] pl points to the instance of the output floating-point triangular matrix structure.
- * @param[out] pd points to the instance of the output floating-point diagonal matrix structure.
- * @param[out] pp points to the instance of the output floating-point permutation vector.
- * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
- * @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- - \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
- * @par
- * Computes the LDL^t decomposition of a matrix A such that P A P^t = L D L^t.
- */
- arm_status arm_mat_ldlt_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pl,
- arm_matrix_instance_f32 * pd,
- uint16_t * pp)
- {
- arm_status status; /* status of matrix inverse */
-
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pl->numRows != pl->numCols) ||
- (pd->numRows != pd->numCols) ||
- (pp->numRows != pp->numCols) ||
- (pl->numRows != pl->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- const int n=pSrc->numRows;
- int fullRank = 1, diag,k;
- float32_t *pA;
- memcpy(pl->pData,pSrc->pData,n*n*sizeof(float32_t));
- pA = pl->pData;
- int cnt = n;
- uint16x8_t vecP;
- for(int k=0;k < n; k+=8)
- {
- mve_pred16_t p0;
- p0 = vctp16q(cnt);
- vecP = vidupq_u16((uint16_t)k, 1);
- vstrhq_p(&pp[k], vecP, p0);
- cnt -= 8;
- }
- for(k=0;k < n; k++)
- {
- /* Find pivot */
- float32_t m=F32_MIN,a;
- int j=k;
- for(int r=k;r<n;r++)
- {
- if (pA[r*n+r] > m)
- {
- m = pA[r*n+r];
- j = r;
- }
- }
- if(j != k)
- {
- SWAP_ROWS(pA,k,j);
- SWAP_COLS(pA,k,j);
- }
- pp[k] = j;
- a = pA[k*n+k];
- if (fabs(a) < 1.0e-8)
- {
- fullRank = 0;
- break;
- }
- float32_t invA;
- invA = 1.0f / a;
- int32x4_t vecOffs;
- int w;
- vecOffs = vidupq_u32((uint32_t)0, 1);
- vecOffs = vmulq_n_s32(vecOffs,n);
- for(w=k+1; w<n; w+=4)
- {
- int cnt = n - k - 1;
- f32x4_t vecX;
- f32x4_t vecA;
- f32x4_t vecW0,vecW1, vecW2, vecW3;
- mve_pred16_t p0;
- vecW0 = vdupq_n_f32(pA[(w + 0)*n+k]);
- vecW1 = vdupq_n_f32(pA[(w + 1)*n+k]);
- vecW2 = vdupq_n_f32(pA[(w + 2)*n+k]);
- vecW3 = vdupq_n_f32(pA[(w + 3)*n+k]);
- for(int x=k+1;x<n;x += 4)
- {
- p0 = vctp32q(cnt);
- //pA[w*n+x] = pA[w*n+x] - pA[w*n+k] * (pA[x*n+k] * invA);
- vecX = vldrwq_gather_shifted_offset_z_f32(&pA[x*n+k], vecOffs, p0);
- vecX = vmulq_m_n_f32(vuninitializedq_f32(),vecX,invA,p0);
-
- vecA = vldrwq_z_f32(&pA[(w + 0)*n+x],p0);
- vecA = vfmsq_m(vecA, vecW0, vecX, p0);
- vstrwq_p(&pA[(w + 0)*n+x], vecA, p0);
- vecA = vldrwq_z_f32(&pA[(w + 1)*n+x],p0);
- vecA = vfmsq_m(vecA, vecW1, vecX, p0);
- vstrwq_p(&pA[(w + 1)*n+x], vecA, p0);
- vecA = vldrwq_z_f32(&pA[(w + 2)*n+x],p0);
- vecA = vfmsq_m(vecA, vecW2, vecX, p0);
- vstrwq_p(&pA[(w + 2)*n+x], vecA, p0);
- vecA = vldrwq_z_f32(&pA[(w + 3)*n+x],p0);
- vecA = vfmsq_m(vecA, vecW3, vecX, p0);
- vstrwq_p(&pA[(w + 3)*n+x], vecA, p0);
- cnt -= 4;
- }
- }
- for(; w<n; w++)
- {
- int cnt = n - k - 1;
- f32x4_t vecA,vecX,vecW;
- mve_pred16_t p0;
- vecW = vdupq_n_f32(pA[w*n+k]);
- for(int x=k+1;x<n;x += 4)
- {
- p0 = vctp32q(cnt);
- //pA[w*n+x] = pA[w*n+x] - pA[w*n+k] * (pA[x*n+k] * invA);
- vecA = vldrwq_z_f32(&pA[w*n+x],p0);
-
- vecX = vldrwq_gather_shifted_offset_z_f32(&pA[x*n+k], vecOffs, p0);
- vecX = vmulq_m_n_f32(vuninitializedq_f32(),vecX,invA,p0);
- vecA = vfmsq_m(vecA, vecW, vecX, p0);
- vstrwq_p(&pA[w*n+x], vecA, p0);
- cnt -= 4;
- }
- }
- for(int w=k+1;w<n;w++)
- {
- pA[w*n+k] = pA[w*n+k] * invA;
- }
-
- }
- diag=k;
- if (!fullRank)
- {
- diag--;
- for(int row=0; row < n;row++)
- {
- mve_pred16_t p0;
- int cnt= n-k;
- f32x4_t zero=vdupq_n_f32(0.0f);
- for(int col=k; col < n;col += 4)
- {
- p0 = vctp32q(cnt);
-
- vstrwq_p(&pl->pData[row*n+col], zero, p0);
- cnt -= 4;
- }
- }
- }
- for(int row=0; row < n;row++)
- {
- mve_pred16_t p0;
- int cnt= n-row-1;
- f32x4_t zero=vdupq_n_f32(0.0f);
-
- for(int col=row+1; col < n;col+=4)
- {
- p0 = vctp32q(cnt);
-
- vstrwq_p(&pl->pData[row*n+col], zero, p0);
- cnt -= 4;
- }
- }
- for(int d=0; d < diag;d++)
- {
- pd->pData[d*n+d] = pl->pData[d*n+d];
- pl->pData[d*n+d] = 1.0;
- }
-
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
- }
- #else
- /// @private
- #define SWAP_ROWS(A,i,j) \
- for(int w=0;w < n; w++) \
- { \
- float32_t tmp; \
- tmp = A[i*n + w]; \
- A[i*n + w] = A[j*n + w];\
- A[j*n + w] = tmp; \
- }
- /// @private
- #define SWAP_COLS(A,i,j) \
- for(int w=0;w < n; w++) \
- { \
- float32_t tmp; \
- tmp = A[w*n + i]; \
- A[w*n + i] = A[w*n + j];\
- A[w*n + j] = tmp; \
- }
- /**
- @ingroup groupMatrix
- */
- /**
- @addtogroup MatrixChol
- @{
- */
-
- /**
- * @brief Floating-point LDL^t decomposition of positive semi-definite matrix.
- * @param[in] pSrc points to the instance of the input floating-point matrix structure.
- * @param[out] pl points to the instance of the output floating-point triangular matrix structure.
- * @param[out] pd points to the instance of the output floating-point diagonal matrix structure.
- * @param[out] pp points to the instance of the output floating-point permutation vector.
- * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
- * @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- - \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
- * @par
- * Computes the LDL^t decomposition of a matrix A such that P A P^t = L D L^t.
- */
- arm_status arm_mat_ldlt_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pl,
- arm_matrix_instance_f32 * pd,
- uint16_t * pp)
- {
- arm_status status; /* status of matrix inverse */
-
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pl->numRows != pl->numCols) ||
- (pd->numRows != pd->numCols) ||
- (pp->numRows != pp->numCols) ||
- (pl->numRows != pl->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- const int n=pSrc->numRows;
- int fullRank = 1, diag,k;
- float32_t *pA;
- memcpy(pl->pData,pSrc->pData,n*n*sizeof(float32_t));
- pA = pl->pData;
- for(int k=0;k < n; k++)
- {
- pp[k] = k;
- }
- for(k=0;k < n; k++)
- {
- /* Find pivot */
- float32_t m=F32_MIN,a;
- int j=k;
- for(int r=k;r<n;r++)
- {
- if (pA[r*n+r] > m)
- {
- m = pA[r*n+r];
- j = r;
- }
- }
- if(j != k)
- {
- SWAP_ROWS(pA,k,j);
- SWAP_COLS(pA,k,j);
- }
- pp[k] = j;
- a = pA[k*n+k];
- if (fabs(a) < 1.0e-8)
- {
- fullRank = 0;
- break;
- }
- for(int w=k+1;w<n;w++)
- {
- for(int x=k+1;x<n;x++)
- {
- pA[w*n+x] = pA[w*n+x] - pA[w*n+k] * pA[x*n+k] / a;
- }
- }
- for(int w=k+1;w<n;w++)
- {
- pA[w*n+k] = pA[w*n+k] / a;
- }
-
- }
- diag=k;
- if (!fullRank)
- {
- diag--;
- for(int row=0; row < n;row++)
- {
- for(int col=k; col < n;col++)
- {
- pl->pData[row*n+col]=0.0;
- }
- }
- }
- for(int row=0; row < n;row++)
- {
- for(int col=row+1; col < n;col++)
- {
- pl->pData[row*n+col] = 0.0;
- }
- }
- for(int d=0; d < diag;d++)
- {
- pd->pData[d*n+d] = pl->pData[d*n+d];
- pl->pData[d*n+d] = 1.0;
- }
-
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
- }
- #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
- /**
- @} end of MatrixChol group
- */
|