UnaryTestsF32.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. #include "UnaryTestsF32.h"
  2. #include "Error.h"
  3. #define SNR_THRESHOLD 120
  4. /*
  5. Reference patterns are generated with
  6. a double precision computation.
  7. */
  8. #define REL_ERROR (1.0e-5)
  9. #define ABS_ERROR (1.0e-5)
  10. /*
  11. Comparisons for inverse
  12. */
  13. /* Not very accurate for big matrix.
  14. But big matrix needed for checking the vectorized code */
  15. #define SNR_THRESHOLD_INV 67
  16. #define REL_ERROR_INV (1.0e-3)
  17. #define ABS_ERROR_INV (1.0e-3)
  18. /*
  19. Comparison for Cholesky
  20. */
  21. #define SNR_THRESHOLD_CHOL 92
  22. #define REL_ERROR_CHOL (1.0e-5)
  23. #define ABS_ERROR_CHOL (5.0e-4)
  24. /* LDLT comparison */
  25. #define REL_ERROR_LDLT (1e-5)
  26. #define ABS_ERROR_LDLT (1e-5)
  27. #define REL_ERROR_LDLT_SPDO (1e-5)
  28. #define ABS_ERROR_LDLT_SDPO (2e-1)
  29. /* Upper bound of maximum matrix dimension used by Python */
  30. #define MAXMATRIXDIM 40
  31. #define LOADDATA2() \
  32. const float32_t *inp1=input1.ptr(); \
  33. const float32_t *inp2=input2.ptr(); \
  34. \
  35. float32_t *ap=a.ptr(); \
  36. float32_t *bp=b.ptr(); \
  37. \
  38. float32_t *outp=output.ptr(); \
  39. int16_t *dimsp = dims.ptr(); \
  40. int nbMatrixes = dims.nbSamples() >> 1;\
  41. int rows,columns; \
  42. int i;
  43. #define LOADDATA1() \
  44. const float32_t *inp1=input1.ptr(); \
  45. \
  46. float32_t *ap=a.ptr(); \
  47. \
  48. float32_t *outp=output.ptr(); \
  49. int16_t *dimsp = dims.ptr(); \
  50. int nbMatrixes = dims.nbSamples() >> 1;\
  51. int rows,columns; \
  52. int i;
  53. #define PREPAREDATA2() \
  54. in1.numRows=rows; \
  55. in1.numCols=columns; \
  56. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  57. in1.pData = ap; \
  58. \
  59. in2.numRows=rows; \
  60. in2.numCols=columns; \
  61. memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\
  62. in2.pData = bp; \
  63. \
  64. out.numRows=rows; \
  65. out.numCols=columns; \
  66. out.pData = outp;
  67. #define PREPAREDATA1(TRANSPOSED) \
  68. in1.numRows=rows; \
  69. in1.numCols=columns; \
  70. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  71. in1.pData = ap; \
  72. \
  73. if (TRANSPOSED) \
  74. { \
  75. out.numRows=columns; \
  76. out.numCols=rows; \
  77. } \
  78. else \
  79. { \
  80. out.numRows=rows; \
  81. out.numCols=columns; \
  82. } \
  83. out.pData = outp;
  84. #define PREPAREDATA1C(TRANSPOSED) \
  85. in1.numRows=rows; \
  86. in1.numCols=columns; \
  87. memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*columns);\
  88. in1.pData = ap; \
  89. \
  90. if (TRANSPOSED) \
  91. { \
  92. out.numRows=columns; \
  93. out.numCols=rows; \
  94. } \
  95. else \
  96. { \
  97. out.numRows=rows; \
  98. out.numCols=columns; \
  99. } \
  100. out.pData = outp;
  101. #define LOADVECDATA2() \
  102. const float32_t *inp1=input1.ptr(); \
  103. const float32_t *inp2=input2.ptr(); \
  104. \
  105. float32_t *ap=a.ptr(); \
  106. float32_t *bp=b.ptr(); \
  107. \
  108. float32_t *outp=output.ptr(); \
  109. int16_t *dimsp = dims.ptr(); \
  110. int nbMatrixes = dims.nbSamples() / 2;\
  111. int rows,internal; \
  112. int i;
  113. #define PREPAREVECDATA2() \
  114. in1.numRows=rows; \
  115. in1.numCols=internal; \
  116. memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*internal);\
  117. in1.pData = ap; \
  118. \
  119. memcpy((void*)bp,(const void*)inp2,2*sizeof(float32_t)*internal);
  120. #define PREPAREDATALL1() \
  121. in1.numRows=rows; \
  122. in1.numCols=columns; \
  123. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  124. in1.pData = ap; \
  125. \
  126. outll.numRows=rows; \
  127. outll.numCols=columns; \
  128. \
  129. outll.pData = outllp;
  130. #define SWAP_ROWS(A,i,j) \
  131. for(int w=0;w < n; w++) \
  132. { \
  133. float64_t tmp; \
  134. tmp = A[i*n + w]; \
  135. A[i*n + w] = A[j*n + w];\
  136. A[j*n + w] = tmp; \
  137. }
  138. void UnaryTestsF32::test_mat_vec_mult_f32()
  139. {
  140. LOADVECDATA2();
  141. for(i=0;i < nbMatrixes ; i ++)
  142. {
  143. rows = *dimsp++;
  144. internal = *dimsp++;
  145. PREPAREVECDATA2();
  146. arm_mat_vec_mult_f32(&this->in1, bp, outp);
  147. outp += rows ;
  148. }
  149. ASSERT_EMPTY_TAIL(output);
  150. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  151. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  152. }
  153. void UnaryTestsF32::test_mat_add_f32()
  154. {
  155. LOADDATA2();
  156. for(i=0;i < nbMatrixes ; i ++)
  157. {
  158. rows = *dimsp++;
  159. columns = *dimsp++;
  160. PREPAREDATA2();
  161. arm_mat_add_f32(&this->in1,&this->in2,&this->out);
  162. outp += (rows * columns);
  163. }
  164. ASSERT_EMPTY_TAIL(output);
  165. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  166. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  167. }
  168. void UnaryTestsF32::test_mat_sub_f32()
  169. {
  170. LOADDATA2();
  171. for(i=0;i < nbMatrixes ; i ++)
  172. {
  173. rows = *dimsp++;
  174. columns = *dimsp++;
  175. PREPAREDATA2();
  176. arm_mat_sub_f32(&this->in1,&this->in2,&this->out);
  177. outp += (rows * columns);
  178. }
  179. ASSERT_EMPTY_TAIL(output);
  180. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  181. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  182. }
  183. void UnaryTestsF32::test_mat_scale_f32()
  184. {
  185. LOADDATA1();
  186. for(i=0;i < nbMatrixes ; i ++)
  187. {
  188. rows = *dimsp++;
  189. columns = *dimsp++;
  190. PREPAREDATA1(false);
  191. arm_mat_scale_f32(&this->in1,0.5f,&this->out);
  192. outp += (rows * columns);
  193. }
  194. ASSERT_EMPTY_TAIL(output);
  195. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  196. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  197. }
  198. void UnaryTestsF32::test_mat_trans_f32()
  199. {
  200. LOADDATA1();
  201. for(i=0;i < nbMatrixes ; i ++)
  202. {
  203. rows = *dimsp++;
  204. columns = *dimsp++;
  205. PREPAREDATA1(true);
  206. arm_mat_trans_f32(&this->in1,&this->out);
  207. outp += (rows * columns);
  208. }
  209. ASSERT_EMPTY_TAIL(output);
  210. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  211. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  212. }
  213. void UnaryTestsF32::test_mat_cmplx_trans_f32()
  214. {
  215. LOADDATA1();
  216. for(i=0;i < nbMatrixes ; i ++)
  217. {
  218. rows = *dimsp++;
  219. columns = *dimsp++;
  220. PREPAREDATA1C(true);
  221. arm_mat_cmplx_trans_f32(&this->in1,&this->out);
  222. outp += 2*(rows * columns);
  223. }
  224. ASSERT_EMPTY_TAIL(output);
  225. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  226. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  227. }
  228. void UnaryTestsF32::test_mat_inverse_f32()
  229. {
  230. const float32_t *inp1=input1.ptr();
  231. float32_t *ap=a.ptr();
  232. float32_t *outp=output.ptr();
  233. int16_t *dimsp = dims.ptr();
  234. int nbMatrixes = dims.nbSamples();
  235. int rows,columns;
  236. int i;
  237. arm_status status;
  238. for(i=0;i < nbMatrixes ; i ++)
  239. {
  240. rows = *dimsp++;
  241. columns = rows;
  242. PREPAREDATA1(false);
  243. status=arm_mat_inverse_f32(&this->in1,&this->out);
  244. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  245. outp += (rows * columns);
  246. inp1 += (rows * columns);
  247. }
  248. ASSERT_EMPTY_TAIL(output);
  249. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_INV);
  250. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR_INV,REL_ERROR_INV);
  251. }
  252. void UnaryTestsF32::test_mat_cholesky_dpo_f32()
  253. {
  254. float32_t *ap=a.ptr();
  255. const float32_t *inp1=input1.ptr();
  256. float32_t *outp=output.ptr();
  257. int16_t *dimsp = dims.ptr();
  258. int nbMatrixes = dims.nbSamples();
  259. int rows,columns;
  260. int i;
  261. arm_status status;
  262. for(i=0;i < nbMatrixes ; i ++)
  263. {
  264. rows = *dimsp++;
  265. columns = rows;
  266. PREPAREDATA1(false);
  267. status=arm_mat_cholesky_f32(&this->in1,&this->out);
  268. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  269. outp += (rows * columns);
  270. inp1 += (rows * columns);
  271. }
  272. ASSERT_EMPTY_TAIL(output);
  273. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_CHOL);
  274. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL);
  275. }
  276. void UnaryTestsF32::test_solve_upper_triangular_f32()
  277. {
  278. float32_t *ap=a.ptr();
  279. const float32_t *inp1=input1.ptr();
  280. float32_t *bp=b.ptr();
  281. const float32_t *inp2=input2.ptr();
  282. float32_t *outp=output.ptr();
  283. int16_t *dimsp = dims.ptr();
  284. int nbMatrixes = dims.nbSamples();
  285. int rows,columns;
  286. int i;
  287. arm_status status;
  288. for(i=0;i < nbMatrixes ; i ++)
  289. {
  290. rows = *dimsp++;
  291. columns = rows;
  292. PREPAREDATA2();
  293. status=arm_mat_solve_upper_triangular_f32(&this->in1,&this->in2,&this->out);
  294. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  295. outp += (rows * columns);
  296. inp1 += (rows * columns);
  297. inp2 += (rows * columns);
  298. }
  299. ASSERT_EMPTY_TAIL(output);
  300. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  301. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  302. }
  303. void UnaryTestsF32::test_solve_lower_triangular_f32()
  304. {
  305. float32_t *ap=a.ptr();
  306. const float32_t *inp1=input1.ptr();
  307. float32_t *bp=b.ptr();
  308. const float32_t *inp2=input2.ptr();
  309. float32_t *outp=output.ptr();
  310. int16_t *dimsp = dims.ptr();
  311. int nbMatrixes = dims.nbSamples();
  312. int rows,columns;
  313. int i;
  314. arm_status status;
  315. for(i=0;i < nbMatrixes ; i ++)
  316. {
  317. rows = *dimsp++;
  318. columns = rows;
  319. PREPAREDATA2();
  320. status=arm_mat_solve_lower_triangular_f32(&this->in1,&this->in2,&this->out);
  321. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  322. outp += (rows * columns);
  323. inp1 += (rows * columns);
  324. inp2 += (rows * columns);
  325. }
  326. ASSERT_EMPTY_TAIL(output);
  327. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  328. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  329. }
  330. static void trans_f64(const float64_t *src, float64_t *dst, int n)
  331. {
  332. for(int r=0; r<n ; r++)
  333. {
  334. for(int c=0; c<n ; c++)
  335. {
  336. dst[c*n+r] = src[r*n+c];
  337. }
  338. }
  339. }
  340. static void trans_f32_f64(const float32_t *src, float64_t *dst, int n)
  341. {
  342. for(int r=0; r<n ; r++)
  343. {
  344. for(int c=0; c<n ; c++)
  345. {
  346. dst[c*n+r] = (float64_t)src[r*n+c];
  347. }
  348. }
  349. }
  350. static void mult_f32_f64(const float32_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  351. {
  352. for(int r=0; r<n ; r++)
  353. {
  354. for(int c=0; c<n ; c++)
  355. {
  356. float64_t sum=0.0;
  357. for(int k=0; k < n ; k++)
  358. {
  359. sum += (float64_t)srcA[r*n+k] * srcB[k*n+c];
  360. }
  361. dst[r*n+c] = sum;
  362. }
  363. }
  364. }
  365. static void mult_f64_f64(const float64_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  366. {
  367. for(int r=0; r<n ; r++)
  368. {
  369. for(int c=0; c<n ; c++)
  370. {
  371. float64_t sum=0.0;
  372. for(int k=0; k < n ; k++)
  373. {
  374. sum += srcA[r*n+k] * srcB[k*n+c];
  375. }
  376. dst[r*n+c] = sum;
  377. }
  378. }
  379. }
  380. void UnaryTestsF32::compute_ldlt_error(const int n,const int16_t *outpp)
  381. {
  382. float64_t *tmpa = tmpapat.ptr() ;
  383. float64_t *tmpb = tmpbpat.ptr() ;
  384. float64_t *tmpc = tmpcpat.ptr() ;
  385. /* Compute P A P^t */
  386. // Create identiy matrix
  387. for(int r=0; r < n; r++)
  388. {
  389. for(int c=0; c < n; c++)
  390. {
  391. if (r == c)
  392. {
  393. tmpa[r*n+c] = 1.0;
  394. }
  395. else
  396. {
  397. tmpa[r*n+c] = 0.0;
  398. }
  399. }
  400. }
  401. // Create permutation matrix
  402. for(int r=0;r < n; r++)
  403. {
  404. SWAP_ROWS(tmpa,r,outpp[r]);
  405. }
  406. trans_f64((const float64_t*)tmpa,tmpb,n);
  407. mult_f32_f64((const float32_t*)this->in1.pData,(const float64_t*)tmpb,tmpc,n);
  408. mult_f64_f64((const float64_t*)tmpa,(const float64_t*)tmpc,outa,n);
  409. /* Compute L D L^t */
  410. trans_f32_f64((const float32_t*)this->outll.pData,tmpc,n);
  411. mult_f32_f64((const float32_t*)this->outd.pData,(const float64_t*)tmpc,tmpa,n);
  412. mult_f32_f64((const float32_t*)this->outll.pData,(const float64_t*)tmpa,outb,n);
  413. }
  414. void UnaryTestsF32::test_mat_ldl_f32()
  415. {
  416. float32_t *ap=a.ptr();
  417. const float32_t *inp1=input1.ptr();
  418. float32_t *outllp=outputll.ptr();
  419. float32_t *outdp=outputd.ptr();
  420. int16_t *outpp=outputp.ptr();
  421. outa=outputa.ptr();
  422. outb=outputb.ptr();
  423. int16_t *dimsp = dims.ptr();
  424. int nbMatrixes = dims.nbSamples();
  425. int rows,columns;
  426. int i;
  427. arm_status status;
  428. int nb=0;
  429. for(i=0;i < nbMatrixes ; i ++)
  430. {
  431. rows = *dimsp++;
  432. columns = rows;
  433. PREPAREDATALL1();
  434. outd.numRows=rows;
  435. outd.numCols=columns;
  436. outd.pData=outdp;
  437. memset(outpp,0,rows*sizeof(uint16_t));
  438. memset(outdp,0,columns*rows*sizeof(float32_t));
  439. status=arm_mat_ldlt_f32(&this->in1,&this->outll,&this->outd,(uint16_t*)outpp);
  440. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  441. compute_ldlt_error(rows,outpp);
  442. outllp += (rows * columns);
  443. outdp += (rows * columns);
  444. outpp += rows;
  445. outa += (rows * columns);
  446. outb +=(rows * columns);
  447. inp1 += (rows * columns);
  448. nb += (rows * columns);
  449. }
  450. ASSERT_EMPTY_TAIL(outputll);
  451. ASSERT_EMPTY_TAIL(outputd);
  452. ASSERT_EMPTY_TAIL(outputp);
  453. ASSERT_EMPTY_TAIL(outputa);
  454. ASSERT_EMPTY_TAIL(outputb);
  455. ASSERT_CLOSE_ERROR(outputa,outputb,snrAbs,snrRel);
  456. }
  457. void UnaryTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
  458. {
  459. (void)params;
  460. switch(id)
  461. {
  462. case TEST_MAT_ADD_F32_1:
  463. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  464. input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
  465. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  466. ref.reload(UnaryTestsF32::REFADD1_F32_ID,mgr);
  467. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  468. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  469. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  470. break;
  471. case TEST_MAT_SUB_F32_2:
  472. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  473. input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
  474. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  475. ref.reload(UnaryTestsF32::REFSUB1_F32_ID,mgr);
  476. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  477. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  478. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  479. break;
  480. case TEST_MAT_SCALE_F32_3:
  481. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  482. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  483. ref.reload(UnaryTestsF32::REFSCALE1_F32_ID,mgr);
  484. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  485. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  486. break;
  487. case TEST_MAT_TRANS_F32_4:
  488. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  489. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  490. ref.reload(UnaryTestsF32::REFTRANS1_F32_ID,mgr);
  491. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  492. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  493. break;
  494. case TEST_MAT_INVERSE_F32_5:
  495. input1.reload(UnaryTestsF32::INPUTSINV_F32_ID,mgr);
  496. dims.reload(UnaryTestsF32::DIMSINVERT1_S16_ID,mgr);
  497. ref.reload(UnaryTestsF32::REFINV1_F32_ID,mgr);
  498. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  499. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  500. break;
  501. case TEST_MAT_VEC_MULT_F32_6:
  502. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  503. input2.reload(UnaryTestsF32::INPUTVEC1_F32_ID,mgr);
  504. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  505. ref.reload(UnaryTestsF32::REFVECMUL1_F32_ID,mgr);
  506. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  507. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  508. b.create(MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  509. break;
  510. case TEST_MAT_CMPLX_TRANS_F32_7:
  511. input1.reload(UnaryTestsF32::INPUTSC1_F32_ID,mgr);
  512. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  513. ref.reload(UnaryTestsF32::REFTRANSC1_F32_ID,mgr);
  514. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  515. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  516. break;
  517. case TEST_MAT_CHOLESKY_DPO_F32_8:
  518. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
  519. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  520. ref.reload(UnaryTestsF32::REFCHOLESKY1_DPO_F32_ID,mgr);
  521. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  522. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  523. break;
  524. case TEST_SOLVE_UPPER_TRIANGULAR_F32_9:
  525. input1.reload(UnaryTestsF32::INPUT_UT_DPO_F32_ID,mgr);
  526. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  527. input2.reload(UnaryTestsF32::INPUT_RNDA_DPO_F32_ID,mgr);
  528. ref.reload(UnaryTestsF32::REF_UTINV_DPO_F32_ID,mgr);
  529. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  530. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  531. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  532. break;
  533. case TEST_SOLVE_LOWER_TRIANGULAR_F32_10:
  534. input1.reload(UnaryTestsF32::INPUT_LT_DPO_F32_ID,mgr);
  535. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  536. input2.reload(UnaryTestsF32::INPUT_RNDA_DPO_F32_ID,mgr);
  537. ref.reload(UnaryTestsF32::REF_LTINV_DPO_F32_ID,mgr);
  538. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  539. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  540. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  541. break;
  542. case TEST_MAT_LDL_F32_11:
  543. // Definite positive test
  544. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
  545. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  546. outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
  547. outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
  548. outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
  549. outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
  550. outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
  551. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  552. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
  553. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
  554. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
  555. this->snrRel=REL_ERROR_LDLT;
  556. this->snrAbs=ABS_ERROR_LDLT;
  557. break;
  558. case TEST_MAT_LDL_F32_12:
  559. // Semi definite positive test
  560. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_SDPO_F32_ID,mgr);
  561. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_SDPO_S16_ID,mgr);
  562. outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
  563. outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
  564. outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
  565. outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
  566. outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
  567. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  568. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
  569. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
  570. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
  571. this->snrRel=REL_ERROR_LDLT_SPDO;
  572. this->snrAbs=ABS_ERROR_LDLT_SDPO;
  573. break;
  574. }
  575. }
  576. void UnaryTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
  577. {
  578. (void)id;
  579. (void)mgr;
  580. switch(id)
  581. {
  582. case TEST_MAT_LDL_F32_11:
  583. //outputll.dump(mgr);
  584. break;
  585. }
  586. //output.dump(mgr);
  587. }