UnaryTestsF64.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. #include "UnaryTestsF64.h"
  2. #include "Error.h"
  3. #define SNR_THRESHOLD 120
  4. /*
  5. Reference patterns are generated with
  6. a double precision computation.
  7. */
  8. #define REL_ERROR (1.0e-6)
  9. #define ABS_ERROR (1.0e-5)
  10. /*
  11. Comparison for Cholesky
  12. */
  13. #define SNR_THRESHOLD_CHOL 270
  14. #define REL_ERROR_CHOL (1.0e-9)
  15. #define ABS_ERROR_CHOL (1.0e-9)
  16. /* LDLT comparison */
  17. #define REL_ERROR_LDLT (1e-5)
  18. #define ABS_ERROR_LDLT (1e-5)
  19. /* Upper bound of maximum matrix dimension used by Python */
  20. #define MAXMATRIXDIM 40
  21. #define LOADDATA2() \
  22. const float64_t *inp1=input1.ptr(); \
  23. const float64_t *inp2=input2.ptr(); \
  24. \
  25. float64_t *ap=a.ptr(); \
  26. float64_t *bp=b.ptr(); \
  27. \
  28. float64_t *outp=output.ptr(); \
  29. int16_t *dimsp = dims.ptr(); \
  30. int nbMatrixes = dims.nbSamples() >> 1;\
  31. int rows,columns; \
  32. int i;
  33. #define LOADDATA1() \
  34. const float64_t *inp1=input1.ptr(); \
  35. \
  36. float64_t *ap=a.ptr(); \
  37. \
  38. float64_t *outp=output.ptr(); \
  39. int16_t *dimsp = dims.ptr(); \
  40. int nbMatrixes = dims.nbSamples() >> 1;\
  41. int rows,columns; \
  42. int i;
  43. #define PREPAREDATA2() \
  44. in1.numRows=rows; \
  45. in1.numCols=columns; \
  46. memcpy((void*)ap,(const void*)inp1,sizeof(float64_t)*rows*columns);\
  47. in1.pData = ap; \
  48. \
  49. in2.numRows=rows; \
  50. in2.numCols=columns; \
  51. memcpy((void*)bp,(const void*)inp2,sizeof(float64_t)*rows*columns);\
  52. in2.pData = bp; \
  53. \
  54. out.numRows=rows; \
  55. out.numCols=columns; \
  56. out.pData = outp;
  57. #define PREPAREDATA1(TRANSPOSED) \
  58. in1.numRows=rows; \
  59. in1.numCols=columns; \
  60. memcpy((void*)ap,(const void*)inp1,sizeof(float64_t)*rows*columns);\
  61. in1.pData = ap; \
  62. \
  63. if (TRANSPOSED) \
  64. { \
  65. out.numRows=columns; \
  66. out.numCols=rows; \
  67. } \
  68. else \
  69. { \
  70. out.numRows=rows; \
  71. out.numCols=columns; \
  72. } \
  73. out.pData = outp;
  74. #define PREPAREDATALL1() \
  75. in1.numRows=rows; \
  76. in1.numCols=columns; \
  77. memcpy((void*)ap,(const void*)inp1,sizeof(float64_t)*rows*columns);\
  78. in1.pData = ap; \
  79. \
  80. outll.numRows=rows; \
  81. outll.numCols=columns; \
  82. \
  83. outll.pData = outllp;
  84. #define SWAP_ROWS(A,i,j) \
  85. for(int w=0;w < n; w++) \
  86. { \
  87. float64_t tmp; \
  88. tmp = A[i*n + w]; \
  89. A[i*n + w] = A[j*n + w];\
  90. A[j*n + w] = tmp; \
  91. }
  92. void UnaryTestsF64::test_mat_add_f64()
  93. {
  94. }
  95. void UnaryTestsF64::test_mat_sub_f64()
  96. {
  97. LOADDATA2();
  98. for(i=0;i < nbMatrixes ; i ++)
  99. {
  100. rows = *dimsp++;
  101. columns = *dimsp++;
  102. PREPAREDATA2();
  103. arm_mat_sub_f64(&this->in1,&this->in2,&this->out);
  104. outp += (rows * columns);
  105. }
  106. ASSERT_EMPTY_TAIL(output);
  107. ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD);
  108. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  109. }
  110. void UnaryTestsF64::test_mat_scale_f64()
  111. {
  112. }
  113. void UnaryTestsF64::test_mat_trans_f64()
  114. {
  115. LOADDATA1();
  116. for(i=0;i < nbMatrixes ; i ++)
  117. {
  118. rows = *dimsp++;
  119. columns = *dimsp++;
  120. PREPAREDATA1(true);
  121. arm_mat_trans_f64(&this->in1,&this->out);
  122. outp += (rows * columns);
  123. }
  124. ASSERT_EMPTY_TAIL(output);
  125. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  126. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  127. }
  128. void UnaryTestsF64::test_mat_inverse_f64()
  129. {
  130. const float64_t *inp1=input1.ptr();
  131. float64_t *ap=a.ptr();
  132. float64_t *outp=output.ptr();
  133. int16_t *dimsp = dims.ptr();
  134. int nbMatrixes = dims.nbSamples();
  135. int rows,columns;
  136. int i;
  137. for(i=0;i < nbMatrixes ; i ++)
  138. {
  139. rows = *dimsp++;
  140. columns = rows;
  141. PREPAREDATA1(false);
  142. arm_mat_inverse_f64(&this->in1,&this->out);
  143. outp += (rows * columns);
  144. inp1 += (rows * columns);
  145. }
  146. ASSERT_EMPTY_TAIL(output);
  147. ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD);
  148. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  149. }
  150. void UnaryTestsF64::test_mat_cholesky_dpo_f64()
  151. {
  152. float64_t *ap=a.ptr();
  153. const float64_t *inp1=input1.ptr();
  154. float64_t *outp=output.ptr();
  155. int16_t *dimsp = dims.ptr();
  156. int nbMatrixes = dims.nbSamples();
  157. int rows,columns;
  158. int i;
  159. arm_status status;
  160. for(i=0;i < nbMatrixes ; i ++)
  161. {
  162. rows = *dimsp++;
  163. columns = rows;
  164. PREPAREDATA1(false);
  165. status=arm_mat_cholesky_f64(&this->in1,&this->out);
  166. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  167. outp += (rows * columns);
  168. inp1 += (rows * columns);
  169. }
  170. ASSERT_EMPTY_TAIL(output);
  171. ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD_CHOL);
  172. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL);
  173. }
  174. void UnaryTestsF64::test_solve_upper_triangular_f64()
  175. {
  176. float64_t *ap=a.ptr();
  177. const float64_t *inp1=input1.ptr();
  178. float64_t *bp=b.ptr();
  179. const float64_t *inp2=input2.ptr();
  180. float64_t *outp=output.ptr();
  181. int16_t *dimsp = dims.ptr();
  182. int nbMatrixes = dims.nbSamples();
  183. int rows,columns;
  184. int i;
  185. arm_status status;
  186. for(i=0;i < nbMatrixes ; i ++)
  187. {
  188. rows = *dimsp++;
  189. columns = rows;
  190. PREPAREDATA2();
  191. status=arm_mat_solve_upper_triangular_f64(&this->in1,&this->in2,&this->out);
  192. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  193. outp += (rows * columns);
  194. inp1 += (rows * columns);
  195. inp2 += (rows * columns);
  196. }
  197. ASSERT_EMPTY_TAIL(output);
  198. ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD);
  199. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  200. }
  201. void UnaryTestsF64::test_solve_lower_triangular_f64()
  202. {
  203. float64_t *ap=a.ptr();
  204. const float64_t *inp1=input1.ptr();
  205. float64_t *bp=b.ptr();
  206. const float64_t *inp2=input2.ptr();
  207. float64_t *outp=output.ptr();
  208. int16_t *dimsp = dims.ptr();
  209. int nbMatrixes = dims.nbSamples();
  210. int rows,columns;
  211. int i;
  212. arm_status status;
  213. for(i=0;i < nbMatrixes ; i ++)
  214. {
  215. rows = *dimsp++;
  216. columns = rows;
  217. PREPAREDATA2();
  218. status=arm_mat_solve_lower_triangular_f64(&this->in1,&this->in2,&this->out);
  219. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  220. outp += (rows * columns);
  221. inp1 += (rows * columns);
  222. inp2 += (rows * columns);
  223. }
  224. ASSERT_EMPTY_TAIL(output);
  225. ASSERT_SNR(output,ref,(float64_t)SNR_THRESHOLD);
  226. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  227. }
  228. static void trans_f64(const float64_t *src, float64_t *dst, int n)
  229. {
  230. for(int r=0; r<n ; r++)
  231. {
  232. for(int c=0; c<n ; c++)
  233. {
  234. dst[c*n+r] = src[r*n+c];
  235. }
  236. }
  237. }
  238. static void mult_f64_f64(const float64_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  239. {
  240. for(int r=0; r<n ; r++)
  241. {
  242. for(int c=0; c<n ; c++)
  243. {
  244. float64_t sum=0.0;
  245. for(int k=0; k < n ; k++)
  246. {
  247. sum += srcA[r*n+k] * srcB[k*n+c];
  248. }
  249. dst[r*n+c] = sum;
  250. }
  251. }
  252. }
  253. void UnaryTestsF64::compute_ldlt_error(const int n,const int16_t *outpp)
  254. {
  255. float64_t *tmpa = tmpapat.ptr() ;
  256. float64_t *tmpb = tmpbpat.ptr() ;
  257. float64_t *tmpc = tmpcpat.ptr() ;
  258. /* Compute P A P^t */
  259. // Create identiy matrix
  260. for(int r=0; r < n; r++)
  261. {
  262. for(int c=0; c < n; c++)
  263. {
  264. if (r == c)
  265. {
  266. tmpa[r*n+c] = 1.0;
  267. }
  268. else
  269. {
  270. tmpa[r*n+c] = 0.0;
  271. }
  272. }
  273. }
  274. // Create permutation matrix
  275. for(int r=0;r < n; r++)
  276. {
  277. SWAP_ROWS(tmpa,r,outpp[r]);
  278. }
  279. trans_f64((const float64_t*)tmpa,tmpb,n);
  280. mult_f64_f64((const float64_t*)this->in1.pData,(const float64_t*)tmpb,tmpc,n);
  281. mult_f64_f64((const float64_t*)tmpa,(const float64_t*)tmpc,outa,n);
  282. /* Compute L D L^t */
  283. trans_f64((const float64_t*)this->outll.pData,tmpc,n);
  284. mult_f64_f64((const float64_t*)this->outd.pData,(const float64_t*)tmpc,tmpa,n);
  285. mult_f64_f64((const float64_t*)this->outll.pData,(const float64_t*)tmpa,outb,n);
  286. }
  287. void UnaryTestsF64::test_mat_ldl_f64()
  288. {
  289. float64_t *ap=a.ptr();
  290. const float64_t *inp1=input1.ptr();
  291. float64_t *outllp=outputll.ptr();
  292. float64_t *outdp=outputd.ptr();
  293. int16_t *outpp=outputp.ptr();
  294. outa=outputa.ptr();
  295. outb=outputb.ptr();
  296. int16_t *dimsp = dims.ptr();
  297. int nbMatrixes = dims.nbSamples();
  298. int rows,columns;
  299. int i;
  300. arm_status status;
  301. int nb=0;
  302. for(i=0;i < nbMatrixes ; i ++)
  303. {
  304. rows = *dimsp++;
  305. columns = rows;
  306. PREPAREDATALL1();
  307. outd.numRows=rows;
  308. outd.numCols=columns;
  309. outd.pData=outdp;
  310. memset(outpp,0,rows*sizeof(uint16_t));
  311. memset(outdp,0,columns*rows*sizeof(float64_t));
  312. status=arm_mat_ldlt_f64(&this->in1,&this->outll,&this->outd,(uint16_t*)outpp);
  313. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  314. compute_ldlt_error(rows,outpp);
  315. outllp += (rows * columns);
  316. outdp += (rows * columns);
  317. outpp += rows;
  318. outa += (rows * columns);
  319. outb +=(rows * columns);
  320. inp1 += (rows * columns);
  321. nb += (rows * columns);
  322. }
  323. ASSERT_EMPTY_TAIL(outputll);
  324. ASSERT_EMPTY_TAIL(outputd);
  325. ASSERT_EMPTY_TAIL(outputp);
  326. ASSERT_EMPTY_TAIL(outputa);
  327. ASSERT_EMPTY_TAIL(outputb);
  328. ASSERT_CLOSE_ERROR(outputa,outputb,ABS_ERROR_LDLT,REL_ERROR_LDLT);
  329. }
  330. void UnaryTestsF64::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
  331. {
  332. (void)params;
  333. switch(id)
  334. {
  335. case TEST_MAT_SUB_F64_2:
  336. input1.reload(UnaryTestsF64::INPUTS1_F64_ID,mgr);
  337. input2.reload(UnaryTestsF64::INPUTS2_F64_ID,mgr);
  338. dims.reload(UnaryTestsF64::DIMSUNARY1_S16_ID,mgr);
  339. ref.reload(UnaryTestsF64::REFSUB1_F64_ID,mgr);
  340. output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
  341. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
  342. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPB_F64_ID,mgr);
  343. break;
  344. case TEST_MAT_TRANS_F64_4:
  345. input1.reload(UnaryTestsF64::INPUTS1_F64_ID,mgr);
  346. dims.reload(UnaryTestsF64::DIMSUNARY1_S16_ID,mgr);
  347. ref.reload(UnaryTestsF64::REFTRANS1_F64_ID,mgr);
  348. output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
  349. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
  350. break;
  351. case TEST_MAT_INVERSE_F64_5:
  352. input1.reload(UnaryTestsF64::INPUTSINV_F64_ID,mgr);
  353. dims.reload(UnaryTestsF64::DIMSINVERT1_S16_ID,mgr);
  354. ref.reload(UnaryTestsF64::REFINV1_F64_ID,mgr);
  355. output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
  356. a.create(ref.nbSamples(),UnaryTestsF64::TMPA_F64_ID,mgr);
  357. break;
  358. case TEST_MAT_CHOLESKY_DPO_F64_6:
  359. input1.reload(UnaryTestsF64::INPUTSCHOLESKY1_DPO_F64_ID,mgr);
  360. dims.reload(UnaryTestsF64::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  361. ref.reload(UnaryTestsF64::REFCHOLESKY1_DPO_F64_ID,mgr);
  362. output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
  363. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
  364. break;
  365. case TEST_SOLVE_UPPER_TRIANGULAR_F64_7:
  366. input1.reload(UnaryTestsF64::INPUT_UT_DPO_F64_ID,mgr);
  367. dims.reload(UnaryTestsF64::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  368. input2.reload(UnaryTestsF64::INPUT_RNDA_DPO_F64_ID,mgr);
  369. ref.reload(UnaryTestsF64::REF_UTINV_DPO_F64_ID,mgr);
  370. output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
  371. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
  372. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPB_F64_ID,mgr);
  373. break;
  374. case TEST_SOLVE_LOWER_TRIANGULAR_F64_8:
  375. input1.reload(UnaryTestsF64::INPUT_LT_DPO_F64_ID,mgr);
  376. dims.reload(UnaryTestsF64::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  377. input2.reload(UnaryTestsF64::INPUT_RNDA_DPO_F64_ID,mgr);
  378. ref.reload(UnaryTestsF64::REF_LTINV_DPO_F64_ID,mgr);
  379. output.create(ref.nbSamples(),UnaryTestsF64::OUT_F64_ID,mgr);
  380. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
  381. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPB_F64_ID,mgr);
  382. break;
  383. case TEST_MAT_LDL_F64_9:
  384. // Definite positive test
  385. input1.reload(UnaryTestsF64::INPUTSCHOLESKY1_DPO_F64_ID,mgr);
  386. dims.reload(UnaryTestsF64::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  387. outputll.create(input1.nbSamples(),UnaryTestsF64::LL_F64_ID,mgr);
  388. outputd.create(input1.nbSamples(),UnaryTestsF64::D_F64_ID,mgr);
  389. outputp.create(input1.nbSamples(),UnaryTestsF64::PERM_S16_ID,mgr);
  390. outputa.create(input1.nbSamples(),UnaryTestsF64::OUTA_F64_ID,mgr);
  391. outputb.create(input1.nbSamples(),UnaryTestsF64::OUTA_F64_ID,mgr);
  392. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
  393. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDB_F64_ID,mgr);
  394. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDC_F64_ID,mgr);
  395. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDD_F64_ID,mgr);
  396. break;
  397. case TEST_MAT_LDL_F64_10:
  398. // Semi definite positive test
  399. input1.reload(UnaryTestsF64::INPUTSCHOLESKY1_SDPO_F64_ID,mgr);
  400. dims.reload(UnaryTestsF64::DIMSCHOLESKY1_SDPO_S16_ID,mgr);
  401. outputll.create(input1.nbSamples(),UnaryTestsF64::LL_F64_ID,mgr);
  402. outputd.create(input1.nbSamples(),UnaryTestsF64::D_F64_ID,mgr);
  403. outputp.create(input1.nbSamples(),UnaryTestsF64::PERM_S16_ID,mgr);
  404. outputa.create(input1.nbSamples(),UnaryTestsF64::OUTA_F64_ID,mgr);
  405. outputb.create(input1.nbSamples(),UnaryTestsF64::OUTA_F64_ID,mgr);
  406. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPA_F64_ID,mgr);
  407. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDB_F64_ID,mgr);
  408. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDC_F64_ID,mgr);
  409. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF64::TMPDD_F64_ID,mgr);
  410. break;
  411. }
  412. }
  413. void UnaryTestsF64::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
  414. {
  415. (void)id;
  416. //output.dump(mgr);
  417. (void)mgr;
  418. }