| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 |
- /* ----------------------------------------------------------------------
- * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
- *
- * $Date: 19. March 2015
- * $Revision: V.1.4.5
- *
- * Project: CMSIS DSP Library
- * Title: arm_mat_mult_fast_q15.c
- *
- * Description: Q15 matrix multiplication (fast variant)
- *
- * Target Processor: Cortex-M4/Cortex-M3
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * - Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * - Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * - Neither the name of ARM LIMITED nor the names of its contributors
- * may be used to endorse or promote products derived from this
- * software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- * -------------------------------------------------------------------- */
- #include "arm_math.h"
- /**
- * @ingroup groupMatrix
- */
- /**
- * @addtogroup MatrixMult
- * @{
- */
- /**
- * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @param[in] *pState points to the array for storing intermediate results
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The difference between the function arm_mat_mult_q15() and this fast variant is that
- * the fast variant use a 32-bit rather than a 64-bit accumulator.
- * The result of each 1.15 x 1.15 multiplication is truncated to
- * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
- * format. Finally, the accumulator is saturated and converted to a 1.15 result.
- *
- * \par
- * The fast version has the same overflow behavior as the standard version but provides
- * less precision since it discards the low 16 bits of each multiplication result.
- * In order to avoid overflows completely the input signals must be scaled down.
- * Scale down one of the input matrices by log2(numColsA) bits to
- * avoid overflows, as a total of numColsA additions are computed internally for each
- * output element.
- *
- * \par
- * See <code>arm_mat_mult_q15()</code> for a slower implementation of this function
- * which uses 64-bit accumulation to provide higher precision.
- */
- arm_status arm_mat_mult_fast_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pState)
- {
- q31_t sum; /* accumulator */
- q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
- q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
- q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
- q15_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
- uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- #ifndef UNALIGNED_SUPPORT_DISABLE
- q31_t in; /* Temporary variable to hold the input value */
- q31_t inA1, inA2, inB1, inB2;
- #else
- q15_t in; /* Temporary variable to hold the input value */
- q15_t inA1, inA2, inB1, inB2;
- #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif
- {
- /* Matrix transpose */
- do
- {
- /* Apply loop unrolling and exchange the columns with row elements */
- col = numColsB >> 2;
- /* The pointer px is set to starting address of the column being processed */
- px = pSrcBT + i;
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while(col > 0u)
- {
- #ifndef UNALIGNED_SUPPORT_DISABLE
- /* Read two elements from the row */
- in = *__SIMD32(pInB)++;
- /* Unpack and store one element in the destination */
- #ifndef ARM_MATH_BIG_ENDIAN
- *px = (q15_t) in;
- #else
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
- #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
- /* Unpack and store the second element in the destination */
- #ifndef ARM_MATH_BIG_ENDIAN
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
- #else
- *px = (q15_t) in;
- #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
- /* Read two elements from the row */
- in = *__SIMD32(pInB)++;
- /* Unpack and store one element in the destination */
- #ifndef ARM_MATH_BIG_ENDIAN
- *px = (q15_t) in;
- #else
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
- #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
- /* Unpack and store the second element in the destination */
- #ifndef ARM_MATH_BIG_ENDIAN
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
- #else
- *px = (q15_t) in;
- #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- #else
- /* Read one element from the row */
- in = *pInB++;
- /* Store one element in the destination */
- *px = in;
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
- /* Read one element from the row */
- in = *pInB++;
- /* Store one element in the destination */
- *px = in;
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
- /* Read one element from the row */
- in = *pInB++;
- /* Store one element in the destination */
- *px = in;
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
- /* Read one element from the row */
- in = *pInB++;
- /* Store one element in the destination */
- *px = in;
- #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
- /* Decrement the column loop counter */
- col--;
- }
- /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- col = numColsB % 0x4u;
- while(col > 0u)
- {
- /* Read and store the input element in the destination */
- *px = *pInB++;
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += numRowsB;
- /* Decrement the column loop counter */
- col--;
- }
- i++;
- /* Decrement the row loop counter */
- row--;
- } while(row > 0u);
- /* Reset the variables for the usage in the following multiplication process */
- row = numRowsA;
- i = 0u;
- px = pDst->pData;
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the transposed pSrcB data */
- pInB = pSrcBT;
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
- /* Apply loop unrolling and compute 2 MACs simultaneously. */
- colCnt = numColsA >> 2;
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pInA = pSrcA->pData + i;
- /* matrix multiplication */
- while(colCnt > 0u)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
- #ifndef UNALIGNED_SUPPORT_DISABLE
- inA1 = *__SIMD32(pInA)++;
- inB1 = *__SIMD32(pInB)++;
- inA2 = *__SIMD32(pInA)++;
- inB2 = *__SIMD32(pInB)++;
- sum = __SMLAD(inA1, inB1, sum);
- sum = __SMLAD(inA2, inB2, sum);
- #else
- inA1 = *pInA++;
- inB1 = *pInB++;
- inA2 = *pInA++;
- sum += inA1 * inB1;
- inB2 = *pInB++;
- inA1 = *pInA++;
- inB1 = *pInB++;
- sum += inA2 * inB2;
- inA2 = *pInA++;
- inB2 = *pInB++;
- sum += inA1 * inB1;
- sum += inA2 * inB2;
- #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
- /* Decrement the loop counter */
- colCnt--;
- }
- /* process odd column samples */
- colCnt = numColsA % 0x4u;
- while(colCnt > 0u)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
- sum += (q31_t) (*pInA++) * (*pInB++);
- colCnt--;
- }
- /* Saturate and store the result in the destination buffer */
- *px = (q15_t) (sum >> 15);
- px++;
- /* Decrement the column loop counter */
- col--;
- } while(col > 0u);
- i = i + numColsA;
- /* Decrement the row loop counter */
- row--;
- } while(row > 0u);
- /* set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- /**
- * @} end of MatrixMult group
- */
|