Stats.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. import os.path
  2. import itertools
  3. import Tools
  4. import random
  5. import numpy as np
  6. import scipy
  7. import scipy.stats
  8. import math
  9. NBTESTS = 10
  10. VECDIM = [12,14,20]
  11. def entropyTest(config,nb):
  12. DIMS = [3,8,9,12]
  13. inputs = []
  14. outputs = []
  15. dims=[NBTESTS]
  16. for i in range(0,NBTESTS):
  17. vecDim = DIMS[i % len(DIMS)]
  18. dims.append(vecDim)
  19. v = np.random.rand(vecDim)
  20. v = v / np.sum(v)
  21. e = scipy.stats.entropy(v)
  22. inputs += list(v)
  23. outputs.append(e)
  24. inputs = np.array(inputs)
  25. outputs = np.array(outputs)
  26. dims = np.array(dims)
  27. config.writeInput(nb, inputs,"Input")
  28. config.writeInputS16(nb, dims,"Dims")
  29. config.writeReference(nb, outputs,"RefEntropy")
  30. def logsumexpTest(config,nb):
  31. DIMS = [3,8,9,12]
  32. inputs = []
  33. outputs = []
  34. dims=[NBTESTS]
  35. for i in range(0,NBTESTS):
  36. vecDim = DIMS[i % len(DIMS)]
  37. dims.append(vecDim)
  38. v = np.random.rand(vecDim)
  39. v = v / np.sum(v)
  40. e = scipy.special.logsumexp(v)
  41. inputs += list(v)
  42. outputs.append(e)
  43. inputs = np.array(inputs)
  44. outputs = np.array(outputs)
  45. dims = np.array(dims)
  46. config.writeInput(nb, inputs,"Input")
  47. config.writeInputS16(nb, dims,"Dims")
  48. config.writeReference(nb, outputs,"RefLogSumExp")
  49. def klTest(config,nb):
  50. DIMS = [3,8,9,12]
  51. inputsA = []
  52. inputsB = []
  53. outputs = []
  54. vecDim = VECDIM[nb % len(VECDIM)]
  55. dims=[NBTESTS]
  56. for i in range(0,NBTESTS):
  57. vecDim = DIMS[i % len(DIMS)]
  58. dims.append(vecDim)
  59. va = np.random.rand(vecDim)
  60. va = va / np.sum(va)
  61. vb = np.random.rand(vecDim)
  62. vb = vb / np.sum(vb)
  63. e = scipy.stats.entropy(va,vb)
  64. inputsA += list(va)
  65. inputsB += list(vb)
  66. outputs.append(e)
  67. inputsA = np.array(inputsA)
  68. inputsB = np.array(inputsB)
  69. outputs = np.array(outputs)
  70. dims = np.array(dims)
  71. config.writeInput(nb, inputsA,"InputA")
  72. config.writeInput(nb, inputsB,"InputB")
  73. config.writeInputS16(nb, dims,"Dims")
  74. config.writeReference(nb, outputs,"RefKL")
  75. def logSumExpDotTest(config,nb):
  76. DIMS = [3,8,9,12]
  77. inputsA = []
  78. inputsB = []
  79. outputs = []
  80. vecDim = VECDIM[nb % len(VECDIM)]
  81. dims=[NBTESTS]
  82. for i in range(0,NBTESTS):
  83. vecDim = DIMS[i % len(DIMS)]
  84. dims.append(vecDim)
  85. va = np.random.rand(vecDim)
  86. va = va / np.sum(va)
  87. vb = np.random.rand(vecDim)
  88. vb = vb / np.sum(vb)
  89. d = 0.001
  90. # It is a proba so must be in [0,1]
  91. # But restricted to ]d,1] so that the log exists
  92. va = (1-d)*va + d
  93. vb = (1-d)*vb + d
  94. e = np.log(np.dot(va,vb))
  95. va = np.log(va)
  96. vb = np.log(vb)
  97. inputsA += list(va)
  98. inputsB += list(vb)
  99. outputs.append(e)
  100. inputsA = np.array(inputsA)
  101. inputsB = np.array(inputsB)
  102. outputs = np.array(outputs)
  103. dims = np.array(dims)
  104. config.writeInput(nb, inputsA,"InputA")
  105. config.writeInput(nb, inputsB,"InputB")
  106. config.writeInputS16(nb, dims,"Dims")
  107. config.writeReference(nb, outputs,"RefLogSumExpDot")
  108. def writeF16OnlyTests(config,nb):
  109. entropyTest(config,nb)
  110. logsumexpTest(config,nb+1)
  111. klTest(config,nb+2)
  112. logSumExpDotTest(config,nb+3)
  113. return(nb+4)
  114. def writeF32OnlyTests(config,nb):
  115. entropyTest(config,nb)
  116. logsumexpTest(config,nb+1)
  117. klTest(config,nb+2)
  118. logSumExpDotTest(config,nb+3)
  119. return(nb+4)
  120. def writeF64OnlyTests(config,nb):
  121. entropyTest(config,nb)
  122. klTest(config,nb+2)
  123. return(nb+4)
  124. # For index in min and max we need to ensure that the difference between values
  125. # of the input is big enough to be representable on q31, q15 or q7.
  126. # Otherwise python will compute an index different from the one
  127. # computed by CMSIS which is normal but then the CMSIS test will fail.
  128. #vfunc = np.vectorize(squarer)
  129. def floatRound(x,f):
  130. return(np.round(x * 2**f)/2**f)
  131. # Min / Max tests
  132. def generateMaxTests(config,nb,format,data):
  133. indexes=[]
  134. maxvals=[]
  135. nbiters = Tools.loopnb(format,Tools.TAILONLY)
  136. index=np.argmax(data[0:nbiters])
  137. maxvalue=data[index]
  138. indexes.append(index)
  139. maxvals.append(maxvalue)
  140. nbiters = Tools.loopnb(format,Tools.BODYONLY)
  141. index=np.argmax(data[0:nbiters])
  142. maxvalue=data[index]
  143. indexes.append(index)
  144. maxvals.append(maxvalue)
  145. nbiters = Tools.loopnb(format,Tools.BODYANDTAIL)
  146. index=np.argmax(data[0:nbiters])
  147. maxvalue=data[index]
  148. indexes.append(index)
  149. maxvals.append(maxvalue)
  150. if format == 7:
  151. # Force max at position 280
  152. nbiters = 280
  153. data = np.zeros(nbiters)
  154. data[nbiters-1] = 0.9
  155. data[nbiters-2] = 0.8
  156. index=np.argmax(data[0:nbiters])
  157. maxvalue=data[index]
  158. indexes.append(index)
  159. maxvals.append(maxvalue)
  160. config.writeInput(nb, data,"InputMaxIndexMax")
  161. config.writeReference(nb, maxvals,"MaxVals")
  162. config.writeInputS16(nb, indexes,"MaxIndexes")
  163. return(nb+1)
  164. def generateMinTests(config,nb,format,data):
  165. indexes=[]
  166. maxvals=[]
  167. nbiters = Tools.loopnb(format,Tools.TAILONLY)
  168. index=np.argmin(data[0:nbiters])
  169. maxvalue=data[index]
  170. indexes.append(index)
  171. maxvals.append(maxvalue)
  172. nbiters = Tools.loopnb(format,Tools.BODYONLY)
  173. index=np.argmin(data[0:nbiters])
  174. maxvalue=data[index]
  175. indexes.append(index)
  176. maxvals.append(maxvalue)
  177. nbiters = Tools.loopnb(format,Tools.BODYANDTAIL)
  178. index=np.argmin(data[0:nbiters])
  179. maxvalue=data[index]
  180. indexes.append(index)
  181. maxvals.append(maxvalue)
  182. if format == 7:
  183. # Force max at position 280
  184. nbiters = 280
  185. data = 0.9*np.ones(nbiters)
  186. data[nbiters-1] = 0.0
  187. data[nbiters-2] = 0.1
  188. index=np.argmin(data[0:nbiters])
  189. maxvalue=data[index]
  190. indexes.append(index)
  191. maxvals.append(maxvalue)
  192. config.writeInput(nb, data,"InputMinIndexMax")
  193. config.writeReference(nb, maxvals,"MinVals")
  194. config.writeInputS16(nb, indexes,"MinIndexes")
  195. return(nb+1)
  196. # Min/Max Abs Tests
  197. def generateMaxAbsTests(config,nb,format,data):
  198. data = np.abs(data)
  199. indexes=[]
  200. maxvals=[]
  201. nbiters = Tools.loopnb(format,Tools.TAILONLY)
  202. index=np.argmax(data[0:nbiters])
  203. maxvalue=data[index]
  204. indexes.append(index)
  205. maxvals.append(maxvalue)
  206. nbiters = Tools.loopnb(format,Tools.BODYONLY)
  207. index=np.argmax(data[0:nbiters])
  208. maxvalue=data[index]
  209. indexes.append(index)
  210. maxvals.append(maxvalue)
  211. nbiters = Tools.loopnb(format,Tools.BODYANDTAIL)
  212. index=np.argmax(data[0:nbiters])
  213. maxvalue=data[index]
  214. indexes.append(index)
  215. maxvals.append(maxvalue)
  216. if format == 7:
  217. # Force max at position 280
  218. nbiters = 280
  219. data = np.zeros(nbiters)
  220. data[nbiters-1] = 0.9
  221. data[nbiters-2] = 0.8
  222. index=np.argmax(data[0:nbiters])
  223. maxvalue=data[index]
  224. indexes.append(index)
  225. maxvals.append(maxvalue)
  226. config.writeInput(nb, data,"InputAbsMaxIndexMax")
  227. config.writeReference(nb, maxvals,"AbsMaxVals")
  228. config.writeInputS16(nb, indexes,"AbsMaxIndexes")
  229. return(nb+1)
  230. def generateMinAbsTests(config,nb,format,data):
  231. data = np.abs(data)
  232. indexes=[]
  233. maxvals=[]
  234. nbiters = Tools.loopnb(format,Tools.TAILONLY)
  235. index=np.argmin(data[0:nbiters])
  236. maxvalue=data[index]
  237. indexes.append(index)
  238. maxvals.append(maxvalue)
  239. nbiters = Tools.loopnb(format,Tools.BODYONLY)
  240. index=np.argmin(data[0:nbiters])
  241. maxvalue=data[index]
  242. indexes.append(index)
  243. maxvals.append(maxvalue)
  244. nbiters = Tools.loopnb(format,Tools.BODYANDTAIL)
  245. index=np.argmin(data[0:nbiters])
  246. maxvalue=data[index]
  247. indexes.append(index)
  248. maxvals.append(maxvalue)
  249. if format == 7:
  250. # Force max at position 280
  251. nbiters = 280
  252. data = 0.9*np.ones(nbiters)
  253. data[nbiters-1] = 0.0
  254. data[nbiters-2] = 0.1
  255. index=np.argmin(data[0:nbiters])
  256. maxvalue=data[index]
  257. indexes.append(index)
  258. maxvals.append(maxvalue)
  259. config.writeInput(nb, data,"InputAbsMinIndexMax")
  260. config.writeReference(nb, maxvals,"AbsMinVals")
  261. config.writeInputS16(nb, indexes,"AbsMinIndexes")
  262. return(nb+1)
  263. def averageTest(format,data):
  264. return(np.average(data))
  265. def powerTest(format,data):
  266. if format == 31:
  267. return(np.dot(data,data) / 2**15) # CMSIS is 2.28 format
  268. elif format == 15:
  269. return(np.dot(data,data) / 2**33) # CMSIS is 34.30 format
  270. elif format == 7:
  271. return(np.dot(data,data) / 2**17) # CMSIS is 18.14 format
  272. else:
  273. return(np.dot(data,data))
  274. def rmsTest(format,data):
  275. return(math.sqrt(np.dot(data,data)/data.size))
  276. def stdTest(format,data):
  277. return(np.std(data,ddof=1))
  278. def varTest(format,data):
  279. return(np.var(data,ddof=1))
  280. def generateFuncTests(config,nb,format,data,func,name):
  281. funcvals=[]
  282. nbiters = Tools.loopnb(format,Tools.TAILONLY)
  283. funcvalue=func(format,data[0:nbiters])
  284. funcvals.append(funcvalue)
  285. nbiters = Tools.loopnb(format,Tools.BODYONLY)
  286. funcvalue=func(format,data[0:nbiters])
  287. funcvals.append(funcvalue)
  288. nbiters = Tools.loopnb(format,Tools.BODYANDTAIL)
  289. funcvalue=func(format,data[0:nbiters])
  290. funcvals.append(funcvalue)
  291. nbiters = 100
  292. funcvalue=func(format,data[0:nbiters])
  293. funcvals.append(funcvalue)
  294. config.writeReference(nb, funcvals,name)
  295. return(nb+1)
  296. def generatePowerTests(config,nb,format,data):
  297. funcvals=[]
  298. nbiters = Tools.loopnb(format,Tools.TAILONLY)
  299. funcvalue=powerTest(format,data[0:nbiters])
  300. funcvals.append(funcvalue)
  301. nbiters = Tools.loopnb(format,Tools.BODYONLY)
  302. funcvalue=powerTest(format,data[0:nbiters])
  303. funcvals.append(funcvalue)
  304. nbiters = Tools.loopnb(format,Tools.BODYANDTAIL)
  305. funcvalue=powerTest(format,data[0:nbiters])
  306. funcvals.append(funcvalue)
  307. if format==31 or format==15:
  308. config.writeReferenceQ63(nb, funcvals,"PowerVals")
  309. elif format==7:
  310. config.writeReferenceQ31(nb, funcvals,"PowerVals")
  311. else:
  312. config.writeReference(nb, funcvals,"PowerVals")
  313. return(nb+1)
  314. def writeTests(config,nb,format):
  315. NBSAMPLES = 300
  316. data1=np.random.randn(NBSAMPLES)
  317. data2=np.random.randn(NBSAMPLES)
  318. data1 = Tools.normalize(data1)
  319. data2 = np.abs(data1)
  320. # Force quantization so that computation of indexes
  321. # in min/max is coherent between Python and CMSIS.
  322. # Otherwise there will be normal differences and the test
  323. # will be displayed as failed.
  324. if format==31:
  325. data1=floatRound(data1,31)
  326. if format==15:
  327. data1=floatRound(data1,15)
  328. if format==7:
  329. data1=floatRound(data1,7)
  330. config.writeInput(1, data1,"Input")
  331. config.writeInput(2, data2,"Input")
  332. nb=generateMaxTests(config,nb,format,data1)
  333. nb=generateFuncTests(config,nb,format,data2,averageTest,"MeanVals")
  334. nb=generateMinTests(config,nb,format,data1)
  335. nb=generatePowerTests(config,nb,format,data1)
  336. nb=generateFuncTests(config,nb,format,data1,rmsTest,"RmsVals")
  337. nb=generateFuncTests(config,nb,format,data1,stdTest,"StdVals")
  338. nb=generateFuncTests(config,nb,format,data1,varTest,"VarVals")
  339. return(nb)
  340. # We don't want to change ID number of existing tests.
  341. # So new tests have to be added after existing ones
  342. def writeNewsTests(config,nb,format):
  343. config.setOverwrite(True)
  344. NBSAMPLES = 300
  345. data1=np.random.randn(NBSAMPLES)
  346. data1 = Tools.normalize(data1)
  347. config.writeInput(1, data1,"InputNew")
  348. nb=generateMaxAbsTests(config,nb,format,data1)
  349. nb=generateMinAbsTests(config,nb,format,data1)
  350. config.setOverwrite(False)
  351. def generateBenchmark(config,format):
  352. NBSAMPLES = 256
  353. data1=np.random.randn(NBSAMPLES)
  354. data2=np.random.randn(NBSAMPLES)
  355. data1 = Tools.normalize(data1)
  356. data2 = np.abs(data1)
  357. if format==31:
  358. data1=floatRound(data1,31)
  359. if format==15:
  360. data1=floatRound(data1,15)
  361. if format==7:
  362. data1=floatRound(data1,7)
  363. config.writeInput(1, data1,"InputBench")
  364. config.writeInput(2, data2,"InputBench")
  365. def generatePatterns():
  366. PATTERNDIR = os.path.join("Patterns","DSP","Stats","Stats")
  367. PARAMDIR = os.path.join("Parameters","DSP","Stats","Stats")
  368. configf32=Tools.Config(PATTERNDIR,PARAMDIR,"f32")
  369. configf16=Tools.Config(PATTERNDIR,PARAMDIR,"f16")
  370. configf64=Tools.Config(PATTERNDIR,PARAMDIR,"f64")
  371. configq31=Tools.Config(PATTERNDIR,PARAMDIR,"q31")
  372. configq15=Tools.Config(PATTERNDIR,PARAMDIR,"q15")
  373. configq7 =Tools.Config(PATTERNDIR,PARAMDIR,"q7")
  374. configf32.setOverwrite(False)
  375. configf16.setOverwrite(False)
  376. configf64.setOverwrite(False)
  377. configq31.setOverwrite(False)
  378. configq15.setOverwrite(False)
  379. configq7.setOverwrite(False)
  380. nb=writeTests(configf32,1,0)
  381. nb=writeF32OnlyTests(configf32,22)
  382. writeNewsTests(configf32,nb,Tools.F32)
  383. writeF64OnlyTests(configf64,22)
  384. nb=writeTests(configq31,1,31)
  385. writeNewsTests(configq31,nb,Tools.Q31)
  386. nb=writeTests(configq15,1,15)
  387. writeNewsTests(configq15,nb,Tools.Q15)
  388. nb=writeTests(configq7,1,7)
  389. writeNewsTests(configq7,nb,Tools.Q7)
  390. nb=writeTests(configf16,1,16)
  391. nb=writeF16OnlyTests(configf16,22)
  392. writeNewsTests(configf16,nb,Tools.F16)
  393. generateBenchmark(configf64, Tools.F64)
  394. generateBenchmark(configf32, Tools.F32)
  395. generateBenchmark(configf16, Tools.F16)
  396. generateBenchmark(configq31, Tools.Q31)
  397. generateBenchmark(configq15, Tools.Q15)
  398. generateBenchmark(configq7, Tools.Q7)
  399. if __name__ == '__main__':
  400. generatePatterns()