UnaryTestsF32.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871
  1. #include "UnaryTestsF32.h"
  2. #include "Error.h"
  3. #define SNR_THRESHOLD 120
  4. /*
  5. Reference patterns are generated with
  6. a double precision computation.
  7. */
  8. #define REL_ERROR (1.0e-5)
  9. #define ABS_ERROR (1.0e-5)
  10. /*
  11. Comparisons for inverse
  12. */
  13. /* Not very accurate for big matrix.
  14. But big matrix needed for checking the vectorized code */
  15. #define SNR_THRESHOLD_INV 67
  16. #define REL_ERROR_INV (1.0e-3)
  17. #define ABS_ERROR_INV (1.0e-3)
  18. /*
  19. Comparison for Cholesky
  20. */
  21. #define SNR_THRESHOLD_CHOL 92
  22. #define REL_ERROR_CHOL (1.0e-5)
  23. #define ABS_ERROR_CHOL (5.0e-4)
  24. /* LDLT comparison */
  25. #define REL_ERROR_LDLT (1e-5)
  26. #define ABS_ERROR_LDLT (1e-5)
  27. #define REL_ERROR_LDLT_SPDO (1e-5)
  28. #define ABS_ERROR_LDLT_SDPO (2e-1)
  29. /* Upper bound of maximum matrix dimension used by Python */
  30. #define MAXMATRIXDIM 40
  31. #define LOADDATA2() \
  32. const float32_t *inp1=input1.ptr(); \
  33. const float32_t *inp2=input2.ptr(); \
  34. \
  35. float32_t *ap=a.ptr(); \
  36. float32_t *bp=b.ptr(); \
  37. \
  38. float32_t *outp=output.ptr(); \
  39. int16_t *dimsp = dims.ptr(); \
  40. int nbMatrixes = dims.nbSamples() >> 1;\
  41. int rows,columns; \
  42. int i;
  43. #define LOADDATA1() \
  44. const float32_t *inp1=input1.ptr(); \
  45. \
  46. float32_t *ap=a.ptr(); \
  47. \
  48. float32_t *outp=output.ptr(); \
  49. int16_t *dimsp = dims.ptr(); \
  50. int nbMatrixes = dims.nbSamples() >> 1;\
  51. int rows,columns; \
  52. int i;
  53. #define PREPAREDATA2() \
  54. in1.numRows=rows; \
  55. in1.numCols=columns; \
  56. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  57. in1.pData = ap; \
  58. \
  59. in2.numRows=rows; \
  60. in2.numCols=columns; \
  61. memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\
  62. in2.pData = bp; \
  63. \
  64. out.numRows=rows; \
  65. out.numCols=columns; \
  66. out.pData = outp;
  67. #define PREPAREDATALT() \
  68. in1.numRows=rows; \
  69. in1.numCols=rows; \
  70. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*rows); \
  71. in1.pData = ap; \
  72. \
  73. in2.numRows=rows; \
  74. in2.numCols=columns; \
  75. memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\
  76. in2.pData = bp; \
  77. \
  78. out.numRows=rows; \
  79. out.numCols=columns; \
  80. out.pData = outp;
  81. #define PREPAREDATA1(TRANSPOSED) \
  82. in1.numRows=rows; \
  83. in1.numCols=columns; \
  84. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  85. in1.pData = ap; \
  86. \
  87. if (TRANSPOSED) \
  88. { \
  89. out.numRows=columns; \
  90. out.numCols=rows; \
  91. } \
  92. else \
  93. { \
  94. out.numRows=rows; \
  95. out.numCols=columns; \
  96. } \
  97. out.pData = outp;
  98. #define PREPAREDATA1C(TRANSPOSED) \
  99. in1.numRows=rows; \
  100. in1.numCols=columns; \
  101. memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*columns);\
  102. in1.pData = ap; \
  103. \
  104. if (TRANSPOSED) \
  105. { \
  106. out.numRows=columns; \
  107. out.numCols=rows; \
  108. } \
  109. else \
  110. { \
  111. out.numRows=rows; \
  112. out.numCols=columns; \
  113. } \
  114. out.pData = outp;
  115. #define LOADVECDATA2() \
  116. const float32_t *inp1=input1.ptr(); \
  117. const float32_t *inp2=input2.ptr(); \
  118. \
  119. float32_t *ap=a.ptr(); \
  120. float32_t *bp=b.ptr(); \
  121. \
  122. float32_t *outp=output.ptr(); \
  123. int16_t *dimsp = dims.ptr(); \
  124. int nbMatrixes = dims.nbSamples() / 2;\
  125. int rows,internal; \
  126. int i;
  127. #define PREPAREVECDATA2() \
  128. in1.numRows=rows; \
  129. in1.numCols=internal; \
  130. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*internal);\
  131. in1.pData = ap; \
  132. \
  133. memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*internal);
  134. #define PREPAREDATALL1() \
  135. in1.numRows=rows; \
  136. in1.numCols=columns; \
  137. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  138. in1.pData = ap; \
  139. \
  140. outll.numRows=rows; \
  141. outll.numCols=columns; \
  142. \
  143. outll.pData = outllp;
  144. #define SWAP_ROWS(A,i,j) \
  145. for(int w=0;w < n; w++) \
  146. { \
  147. float64_t tmp; \
  148. tmp = A[i*n + w]; \
  149. A[i*n + w] = A[j*n + w];\
  150. A[j*n + w] = tmp; \
  151. }
  152. void UnaryTestsF32::test_mat_vec_mult_f32()
  153. {
  154. LOADVECDATA2();
  155. for(i=0;i < nbMatrixes ; i ++)
  156. {
  157. rows = *dimsp++;
  158. internal = *dimsp++;
  159. PREPAREVECDATA2();
  160. arm_mat_vec_mult_f32(&this->in1, bp, outp);
  161. outp += rows ;
  162. }
  163. ASSERT_EMPTY_TAIL(output);
  164. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  165. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  166. }
  167. void UnaryTestsF32::test_mat_add_f32()
  168. {
  169. LOADDATA2();
  170. arm_status status;
  171. for(i=0;i < nbMatrixes ; i ++)
  172. {
  173. rows = *dimsp++;
  174. columns = *dimsp++;
  175. PREPAREDATA2();
  176. status=arm_mat_add_f32(&this->in1,&this->in2,&this->out);
  177. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  178. outp += (rows * columns);
  179. }
  180. ASSERT_EMPTY_TAIL(output);
  181. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  182. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  183. }
  184. void UnaryTestsF32::test_mat_sub_f32()
  185. {
  186. LOADDATA2();
  187. arm_status status;
  188. for(i=0;i < nbMatrixes ; i ++)
  189. {
  190. rows = *dimsp++;
  191. columns = *dimsp++;
  192. PREPAREDATA2();
  193. status=arm_mat_sub_f32(&this->in1,&this->in2,&this->out);
  194. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  195. outp += (rows * columns);
  196. }
  197. ASSERT_EMPTY_TAIL(output);
  198. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  199. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  200. }
  201. void UnaryTestsF32::test_mat_scale_f32()
  202. {
  203. LOADDATA1();
  204. arm_status status;
  205. for(i=0;i < nbMatrixes ; i ++)
  206. {
  207. rows = *dimsp++;
  208. columns = *dimsp++;
  209. PREPAREDATA1(false);
  210. status=arm_mat_scale_f32(&this->in1,0.5f,&this->out);
  211. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  212. outp += (rows * columns);
  213. }
  214. ASSERT_EMPTY_TAIL(output);
  215. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  216. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  217. }
  218. void UnaryTestsF32::test_mat_trans_f32()
  219. {
  220. LOADDATA1();
  221. arm_status status;
  222. for(i=0;i < nbMatrixes ; i ++)
  223. {
  224. rows = *dimsp++;
  225. columns = *dimsp++;
  226. PREPAREDATA1(true);
  227. status=arm_mat_trans_f32(&this->in1,&this->out);
  228. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  229. outp += (rows * columns);
  230. }
  231. ASSERT_EMPTY_TAIL(output);
  232. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  233. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  234. }
  235. void UnaryTestsF32::test_mat_cmplx_trans_f32()
  236. {
  237. LOADDATA1();
  238. arm_status status;
  239. for(i=0;i < nbMatrixes ; i ++)
  240. {
  241. rows = *dimsp++;
  242. columns = *dimsp++;
  243. PREPAREDATA1C(true);
  244. status=arm_mat_cmplx_trans_f32(&this->in1,&this->out);
  245. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  246. outp += 2*(rows * columns);
  247. }
  248. ASSERT_EMPTY_TAIL(output);
  249. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  250. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  251. }
  252. static void refInnerTail(float32_t *b)
  253. {
  254. b[0] = 1.0f;
  255. b[1] = -2.0f;
  256. b[2] = 3.0f;
  257. b[3] = -4.0f;
  258. }
  259. static void checkInnerTail(float32_t *b)
  260. {
  261. ASSERT_TRUE(b[0] == 1.0f);
  262. ASSERT_TRUE(b[1] == -2.0f);
  263. ASSERT_TRUE(b[2] == 3.0f);
  264. ASSERT_TRUE(b[3] == -4.0f);
  265. }
  266. void UnaryTestsF32::test_mat_inverse_f32()
  267. {
  268. const float32_t *inp1=input1.ptr();
  269. float32_t *ap=a.ptr();
  270. float32_t *outp=output.ptr();
  271. int16_t *dimsp = dims.ptr();
  272. int nbMatrixes = dims.nbSamples();
  273. int rows,columns;
  274. int i;
  275. arm_status status;
  276. for(i=0;i < nbMatrixes ; i ++)
  277. {
  278. rows = *dimsp++;
  279. columns = rows;
  280. PREPAREDATA1(false);
  281. refInnerTail(outp+(rows * columns));
  282. status=arm_mat_inverse_f32(&this->in1,&this->out);
  283. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  284. outp += (rows * columns);
  285. inp1 += (rows * columns);
  286. checkInnerTail(outp);
  287. }
  288. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_INV);
  289. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR_INV,REL_ERROR_INV);
  290. }
  291. void UnaryTestsF32::test_mat_cholesky_dpo_f32()
  292. {
  293. float32_t *ap=a.ptr();
  294. const float32_t *inp1=input1.ptr();
  295. float32_t *outp=output.ptr();
  296. int16_t *dimsp = dims.ptr();
  297. int nbMatrixes = dims.nbSamples();
  298. int rows,columns;
  299. int i;
  300. arm_status status;
  301. for(i=0;i < nbMatrixes ; i ++)
  302. {
  303. rows = *dimsp++;
  304. columns = rows;
  305. PREPAREDATA1(false);
  306. status=arm_mat_cholesky_f32(&this->in1,&this->out);
  307. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  308. outp += (rows * columns);
  309. inp1 += (rows * columns);
  310. }
  311. ASSERT_EMPTY_TAIL(output);
  312. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_CHOL);
  313. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL);
  314. }
  315. void UnaryTestsF32::test_solve_upper_triangular_f32()
  316. {
  317. float32_t *ap=a.ptr();
  318. const float32_t *inp1=input1.ptr();
  319. float32_t *bp=b.ptr();
  320. const float32_t *inp2=input2.ptr();
  321. float32_t *outp=output.ptr();
  322. int16_t *dimsp = dims.ptr();
  323. int nbMatrixes = dims.nbSamples()>>1;
  324. int rows,columns;
  325. int i;
  326. arm_status status;
  327. for(i=0;i < nbMatrixes ; i ++)
  328. {
  329. rows = *dimsp++;
  330. columns = *dimsp++;
  331. PREPAREDATALT();
  332. status=arm_mat_solve_upper_triangular_f32(&this->in1,&this->in2,&this->out);
  333. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  334. outp += (rows * columns);
  335. inp1 += (rows * rows);
  336. inp2 += (rows * columns);
  337. }
  338. ASSERT_EMPTY_TAIL(output);
  339. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  340. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  341. }
  342. void UnaryTestsF32::test_solve_lower_triangular_f32()
  343. {
  344. float32_t *ap=a.ptr();
  345. const float32_t *inp1=input1.ptr();
  346. float32_t *bp=b.ptr();
  347. const float32_t *inp2=input2.ptr();
  348. float32_t *outp=output.ptr();
  349. int16_t *dimsp = dims.ptr();
  350. int nbMatrixes = dims.nbSamples() >> 1;
  351. int rows,columns;
  352. int i;
  353. arm_status status;
  354. for(i=0;i < nbMatrixes ; i ++)
  355. {
  356. rows = *dimsp++;
  357. columns = *dimsp++;
  358. PREPAREDATALT();
  359. status=arm_mat_solve_lower_triangular_f32(&this->in1,&this->in2,&this->out);
  360. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  361. outp += (rows * columns);
  362. inp1 += (rows * rows);
  363. inp2 += (rows * columns);
  364. }
  365. ASSERT_EMPTY_TAIL(output);
  366. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  367. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  368. }
  369. static void trans_f64(const float64_t *src, float64_t *dst, int n)
  370. {
  371. for(int r=0; r<n ; r++)
  372. {
  373. for(int c=0; c<n ; c++)
  374. {
  375. dst[c*n+r] = src[r*n+c];
  376. }
  377. }
  378. }
  379. static void trans_f32_f64(const float32_t *src, float64_t *dst, int n)
  380. {
  381. for(int r=0; r<n ; r++)
  382. {
  383. for(int c=0; c<n ; c++)
  384. {
  385. dst[c*n+r] = (float64_t)src[r*n+c];
  386. }
  387. }
  388. }
  389. static void mult_f32_f64(const float32_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  390. {
  391. for(int r=0; r<n ; r++)
  392. {
  393. for(int c=0; c<n ; c++)
  394. {
  395. float64_t sum=0.0;
  396. for(int k=0; k < n ; k++)
  397. {
  398. sum += (float64_t)srcA[r*n+k] * srcB[k*n+c];
  399. }
  400. dst[r*n+c] = sum;
  401. }
  402. }
  403. }
  404. static void mult_f64_f64(const float64_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  405. {
  406. for(int r=0; r<n ; r++)
  407. {
  408. for(int c=0; c<n ; c++)
  409. {
  410. float64_t sum=0.0;
  411. for(int k=0; k < n ; k++)
  412. {
  413. sum += srcA[r*n+k] * srcB[k*n+c];
  414. }
  415. dst[r*n+c] = sum;
  416. }
  417. }
  418. }
  419. void UnaryTestsF32::compute_ldlt_error(const int n,const int16_t *outpp)
  420. {
  421. float64_t *tmpa = tmpapat.ptr() ;
  422. float64_t *tmpb = tmpbpat.ptr() ;
  423. float64_t *tmpc = tmpcpat.ptr() ;
  424. /* Compute P A P^t */
  425. // Create identiy matrix
  426. for(int r=0; r < n; r++)
  427. {
  428. for(int c=0; c < n; c++)
  429. {
  430. if (r == c)
  431. {
  432. tmpa[r*n+c] = 1.0;
  433. }
  434. else
  435. {
  436. tmpa[r*n+c] = 0.0;
  437. }
  438. }
  439. }
  440. // Create permutation matrix
  441. for(int r=0;r < n; r++)
  442. {
  443. SWAP_ROWS(tmpa,r,outpp[r]);
  444. }
  445. trans_f64((const float64_t*)tmpa,tmpb,n);
  446. mult_f32_f64((const float32_t*)this->in1.pData,(const float64_t*)tmpb,tmpc,n);
  447. mult_f64_f64((const float64_t*)tmpa,(const float64_t*)tmpc,outa,n);
  448. /* Compute L D L^t */
  449. trans_f32_f64((const float32_t*)this->outll.pData,tmpc,n);
  450. mult_f32_f64((const float32_t*)this->outd.pData,(const float64_t*)tmpc,tmpa,n);
  451. mult_f32_f64((const float32_t*)this->outll.pData,(const float64_t*)tmpa,outb,n);
  452. }
  453. void UnaryTestsF32::test_mat_ldl_f32()
  454. {
  455. float32_t *ap=a.ptr();
  456. const float32_t *inp1=input1.ptr();
  457. float32_t *outllp=outputll.ptr();
  458. float32_t *outdp=outputd.ptr();
  459. int16_t *outpp=outputp.ptr();
  460. outa=outputa.ptr();
  461. outb=outputb.ptr();
  462. int16_t *dimsp = dims.ptr();
  463. int nbMatrixes = dims.nbSamples();
  464. int rows,columns;
  465. int i;
  466. arm_status status;
  467. for(i=0;i < nbMatrixes ; i ++)
  468. {
  469. rows = *dimsp++;
  470. columns = rows;
  471. PREPAREDATALL1();
  472. outd.numRows=rows;
  473. outd.numCols=columns;
  474. outd.pData=outdp;
  475. memset(outpp,0,rows*sizeof(uint16_t));
  476. memset(outdp,0,columns*rows*sizeof(float32_t));
  477. status=arm_mat_ldlt_f32(&this->in1,&this->outll,&this->outd,(uint16_t*)outpp);
  478. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  479. compute_ldlt_error(rows,outpp);
  480. outllp += (rows * columns);
  481. outdp += (rows * columns);
  482. outpp += rows;
  483. outa += (rows * columns);
  484. outb +=(rows * columns);
  485. inp1 += (rows * columns);
  486. }
  487. ASSERT_EMPTY_TAIL(outputll);
  488. ASSERT_EMPTY_TAIL(outputd);
  489. ASSERT_EMPTY_TAIL(outputp);
  490. ASSERT_EMPTY_TAIL(outputa);
  491. ASSERT_EMPTY_TAIL(outputb);
  492. ASSERT_CLOSE_ERROR(outputa,outputb,snrAbs,snrRel);
  493. }
  494. void UnaryTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
  495. {
  496. (void)params;
  497. switch(id)
  498. {
  499. case TEST_MAT_ADD_F32_1:
  500. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  501. input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
  502. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  503. ref.reload(UnaryTestsF32::REFADD1_F32_ID,mgr);
  504. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  505. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  506. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  507. break;
  508. case TEST_MAT_SUB_F32_2:
  509. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  510. input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
  511. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  512. ref.reload(UnaryTestsF32::REFSUB1_F32_ID,mgr);
  513. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  514. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  515. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  516. break;
  517. case TEST_MAT_SCALE_F32_3:
  518. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  519. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  520. ref.reload(UnaryTestsF32::REFSCALE1_F32_ID,mgr);
  521. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  522. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  523. break;
  524. case TEST_MAT_TRANS_F32_4:
  525. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  526. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  527. ref.reload(UnaryTestsF32::REFTRANS1_F32_ID,mgr);
  528. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  529. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  530. break;
  531. case TEST_MAT_INVERSE_F32_5:
  532. input1.reload(UnaryTestsF32::INPUTSINV_F32_ID,mgr);
  533. dims.reload(UnaryTestsF32::DIMSINVERT1_S16_ID,mgr);
  534. ref.reload(UnaryTestsF32::REFINV1_F32_ID,mgr);
  535. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  536. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  537. break;
  538. case TEST_MAT_VEC_MULT_F32_6:
  539. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  540. input2.reload(UnaryTestsF32::INPUTVEC1_F32_ID,mgr);
  541. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  542. ref.reload(UnaryTestsF32::REFVECMUL1_F32_ID,mgr);
  543. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  544. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  545. b.create(MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  546. break;
  547. case TEST_MAT_CMPLX_TRANS_F32_7:
  548. input1.reload(UnaryTestsF32::INPUTSC1_F32_ID,mgr);
  549. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  550. ref.reload(UnaryTestsF32::REFTRANSC1_F32_ID,mgr);
  551. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  552. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  553. break;
  554. case TEST_MAT_CHOLESKY_DPO_F32_8:
  555. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
  556. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  557. ref.reload(UnaryTestsF32::REFCHOLESKY1_DPO_F32_ID,mgr);
  558. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  559. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  560. break;
  561. case TEST_SOLVE_UPPER_TRIANGULAR_F32_9:
  562. input1.reload(UnaryTestsF32::INPUT_MAT_UTSOLVE_F32_ID,mgr);
  563. input2.reload(UnaryTestsF32::INPUT_VEC_LTSOLVE_F32_ID,mgr);
  564. dims.reload(UnaryTestsF32::DIM_LTSOLVE_F32_ID,mgr);
  565. ref.reload(UnaryTestsF32::REF_UT_SOLVE_F32_ID,mgr);
  566. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  567. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  568. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  569. break;
  570. case TEST_SOLVE_LOWER_TRIANGULAR_F32_10:
  571. input1.reload(UnaryTestsF32::INPUT_MAT_LTSOLVE_F32_ID,mgr);
  572. input2.reload(UnaryTestsF32::INPUT_VEC_LTSOLVE_F32_ID,mgr);
  573. dims.reload(UnaryTestsF32::DIM_LTSOLVE_F32_ID,mgr);
  574. ref.reload(UnaryTestsF32::REF_LT_SOLVE_F32_ID,mgr);
  575. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  576. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  577. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  578. break;
  579. case TEST_MAT_LDL_F32_11:
  580. // Definite positive test
  581. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
  582. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  583. outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
  584. outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
  585. outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
  586. outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
  587. outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
  588. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  589. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
  590. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
  591. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
  592. this->snrRel=REL_ERROR_LDLT;
  593. this->snrAbs=ABS_ERROR_LDLT;
  594. break;
  595. case TEST_MAT_LDL_F32_12:
  596. // Semi definite positive test
  597. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_SDPO_F32_ID,mgr);
  598. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_SDPO_S16_ID,mgr);
  599. outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
  600. outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
  601. outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
  602. outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
  603. outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
  604. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  605. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
  606. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
  607. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
  608. this->snrRel=REL_ERROR_LDLT_SPDO;
  609. this->snrAbs=ABS_ERROR_LDLT_SDPO;
  610. break;
  611. }
  612. }
  613. void UnaryTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
  614. {
  615. (void)id;
  616. (void)mgr;
  617. switch(id)
  618. {
  619. case TEST_MAT_LDL_F32_11:
  620. //outputll.dump(mgr);
  621. break;
  622. }
  623. //output.dump(mgr);
  624. }