arm_vec_math_f16.h 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. /******************************************************************************
  2. * @file arm_vec_math_f16.h
  3. * @brief Public header file for CMSIS DSP Library
  4. * @version V1.10.0
  5. * @date 08 July 2021
  6. * Target Processor: Cortex-M and Cortex-A cores
  7. ******************************************************************************/
  8. /*
  9. * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
  10. *
  11. * SPDX-License-Identifier: Apache-2.0
  12. *
  13. * Licensed under the Apache License, Version 2.0 (the License); you may
  14. * not use this file except in compliance with the License.
  15. * You may obtain a copy of the License at
  16. *
  17. * www.apache.org/licenses/LICENSE-2.0
  18. *
  19. * Unless required by applicable law or agreed to in writing, software
  20. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  21. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  22. * See the License for the specific language governing permissions and
  23. * limitations under the License.
  24. */
  25. #ifndef _ARM_VEC_MATH_F16_H
  26. #define _ARM_VEC_MATH_F16_H
  27. #include "arm_math_types_f16.h"
  28. #include "arm_common_tables_f16.h"
  29. #include "arm_helium_utils.h"
  30. #ifdef __cplusplus
  31. extern "C"
  32. {
  33. #endif
  34. #if defined(ARM_FLOAT16_SUPPORTED)
  35. #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
  36. static const float16_t __logf_rng_f16=0.693147180f16;
  37. /* fast inverse approximation (3x newton) */
  38. __STATIC_INLINE f16x8_t vrecip_medprec_f16(
  39. f16x8_t x)
  40. {
  41. q15x8_t m;
  42. f16x8_t b;
  43. any16x8_t xinv;
  44. f16x8_t ax = vabsq(x);
  45. xinv.f = ax;
  46. m = 0x03c00 - (xinv.i & 0x07c00);
  47. xinv.i = xinv.i + m;
  48. xinv.f = 1.41176471f16 - 0.47058824f16 * xinv.f;
  49. xinv.i = xinv.i + m;
  50. b = 2.0f16 - xinv.f * ax;
  51. xinv.f = xinv.f * b;
  52. b = 2.0f16 - xinv.f * ax;
  53. xinv.f = xinv.f * b;
  54. b = 2.0f16 - xinv.f * ax;
  55. xinv.f = xinv.f * b;
  56. xinv.f = vdupq_m_n_f16(xinv.f, F16INFINITY, vcmpeqq_n_f16(x, 0.0f));
  57. /*
  58. * restore sign
  59. */
  60. xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq_n_f16(x, 0.0f));
  61. return xinv.f;
  62. }
  63. /* fast inverse approximation (4x newton) */
  64. __STATIC_INLINE f16x8_t vrecip_hiprec_f16(
  65. f16x8_t x)
  66. {
  67. q15x8_t m;
  68. f16x8_t b;
  69. any16x8_t xinv;
  70. f16x8_t ax = vabsq(x);
  71. xinv.f = ax;
  72. m = 0x03c00 - (xinv.i & 0x07c00);
  73. xinv.i = xinv.i + m;
  74. xinv.f = 1.41176471f16 - 0.47058824f16 * xinv.f;
  75. xinv.i = xinv.i + m;
  76. b = 2.0f16 - xinv.f * ax;
  77. xinv.f = xinv.f * b;
  78. b = 2.0f16 - xinv.f * ax;
  79. xinv.f = xinv.f * b;
  80. b = 2.0f16 - xinv.f * ax;
  81. xinv.f = xinv.f * b;
  82. b = 2.0f16 - xinv.f * ax;
  83. xinv.f = xinv.f * b;
  84. xinv.f = vdupq_m_n_f16(xinv.f, F16INFINITY, vcmpeqq_n_f16(x, 0.0f));
  85. /*
  86. * restore sign
  87. */
  88. xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq_n_f16(x, 0.0f));
  89. return xinv.f;
  90. }
  91. __STATIC_INLINE f16x8_t vdiv_f16(
  92. f16x8_t num, f16x8_t den)
  93. {
  94. return vmulq(num, vrecip_hiprec_f16(den));
  95. }
  96. /**
  97. @brief Single-precision taylor dev.
  98. @param[in] x f16 vector input
  99. @param[in] coeffs f16 vector coeffs
  100. @return destination f16 vector
  101. */
  102. __STATIC_INLINE float16x8_t vtaylor_polyq_f16(
  103. float16x8_t x,
  104. const float16_t * coeffs)
  105. {
  106. float16x8_t A = vfmasq(vdupq_n_f16(coeffs[4]), x, coeffs[0]);
  107. float16x8_t B = vfmasq(vdupq_n_f16(coeffs[6]), x, coeffs[2]);
  108. float16x8_t C = vfmasq(vdupq_n_f16(coeffs[5]), x, coeffs[1]);
  109. float16x8_t D = vfmasq(vdupq_n_f16(coeffs[7]), x, coeffs[3]);
  110. float16x8_t x2 = vmulq(x, x);
  111. float16x8_t x4 = vmulq(x2, x2);
  112. float16x8_t res = vfmaq(vfmaq_f16(A, B, x2), vfmaq_f16(C, D, x2), x4);
  113. return res;
  114. }
  115. #define VMANT_EXP_F16(x) \
  116. any16x8_t r; \
  117. int16x8_t n; \
  118. \
  119. r.f = x; \
  120. n = r.i >> 10; \
  121. n = n - 15; \
  122. r.i = r.i - (n << 10);\
  123. \
  124. vecExpUnBiased = n; \
  125. vecTmpFlt1 = r.f;
  126. __STATIC_INLINE float16x8_t vlogq_f16(float16x8_t vecIn)
  127. {
  128. q15x8_t vecExpUnBiased;
  129. float16x8_t vecTmpFlt0, vecTmpFlt1;
  130. float16x8_t vecAcc0, vecAcc1, vecAcc2, vecAcc3;
  131. float16x8_t vecExpUnBiasedFlt;
  132. /*
  133. * extract exponent
  134. */
  135. VMANT_EXP_F16(vecIn);
  136. vecTmpFlt0 = vecTmpFlt1 * vecTmpFlt1;
  137. /*
  138. * a = (__logf_lut_f16[4] * r.f) + (__logf_lut_f16[0]);
  139. */
  140. vecAcc0 = vdupq_n_f16(__logf_lut_f16[0]);
  141. vecAcc0 = vfmaq(vecAcc0, vecTmpFlt1, __logf_lut_f16[4]);
  142. /*
  143. * b = (__logf_lut_f16[6] * r.f) + (__logf_lut_f16[2]);
  144. */
  145. vecAcc1 = vdupq_n_f16(__logf_lut_f16[2]);
  146. vecAcc1 = vfmaq(vecAcc1, vecTmpFlt1, __logf_lut_f16[6]);
  147. /*
  148. * c = (__logf_lut_f16[5] * r.f) + (__logf_lut_f16[1]);
  149. */
  150. vecAcc2 = vdupq_n_f16(__logf_lut_f16[1]);
  151. vecAcc2 = vfmaq(vecAcc2, vecTmpFlt1, __logf_lut_f16[5]);
  152. /*
  153. * d = (__logf_lut_f16[7] * r.f) + (__logf_lut_f16[3]);
  154. */
  155. vecAcc3 = vdupq_n_f16(__logf_lut_f16[3]);
  156. vecAcc3 = vfmaq(vecAcc3, vecTmpFlt1, __logf_lut_f16[7]);
  157. /*
  158. * a = a + b * xx;
  159. */
  160. vecAcc0 = vfmaq(vecAcc0, vecAcc1, vecTmpFlt0);
  161. /*
  162. * c = c + d * xx;
  163. */
  164. vecAcc2 = vfmaq(vecAcc2, vecAcc3, vecTmpFlt0);
  165. /*
  166. * xx = xx * xx;
  167. */
  168. vecTmpFlt0 = vecTmpFlt0 * vecTmpFlt0;
  169. vecExpUnBiasedFlt = vcvtq_f16_s16(vecExpUnBiased);
  170. /*
  171. * r.f = a + c * xx;
  172. */
  173. vecAcc0 = vfmaq(vecAcc0, vecAcc2, vecTmpFlt0);
  174. /*
  175. * add exponent
  176. * r.f = r.f + ((float32_t) m) * __logf_rng_f16;
  177. */
  178. vecAcc0 = vfmaq(vecAcc0, vecExpUnBiasedFlt, __logf_rng_f16);
  179. // set log0 down to -inf
  180. vecAcc0 = vdupq_m_n_f16(vecAcc0, -(_Float16)F16INFINITY, vcmpeqq_n_f16(vecIn, 0.0f));
  181. return vecAcc0;
  182. }
  183. __STATIC_INLINE float16x8_t vexpq_f16(
  184. float16x8_t x)
  185. {
  186. // Perform range reduction [-log(2),log(2)]
  187. int16x8_t m = vcvtq_s16_f16(vmulq_n_f16(x, 1.4426950408f16));
  188. float16x8_t val = vfmsq_f16(x, vcvtq_f16_s16(m), vdupq_n_f16(0.6931471805f16));
  189. // Polynomial Approximation
  190. float16x8_t poly = vtaylor_polyq_f16(val, exp_tab_f16);
  191. // Reconstruct
  192. poly = (float16x8_t) (vqaddq_s16((int16x8_t) (poly), vqshlq_n_s16(m, 10)));
  193. poly = vdupq_m_n_f16(poly, 0.0f16, vcmpltq_n_s16(m, -14));
  194. return poly;
  195. }
  196. __STATIC_INLINE float16x8_t arm_vec_exponent_f16(float16x8_t x, int16_t nb)
  197. {
  198. float16x8_t r = x;
  199. nb--;
  200. while (nb > 0) {
  201. r = vmulq(r, x);
  202. nb--;
  203. }
  204. return (r);
  205. }
  206. __STATIC_INLINE f16x8_t vpowq_f16(
  207. f16x8_t val,
  208. f16x8_t n)
  209. {
  210. return vexpq_f16(vmulq_f16(n, vlogq_f16(val)));
  211. }
  212. #define INV_NEWTON_INIT_F16 0x7773
  213. __STATIC_INLINE f16x8_t vrecip_f16(f16x8_t vecIn)
  214. {
  215. f16x8_t vecSx, vecW, vecTmp;
  216. any16x8_t v;
  217. vecSx = vabsq(vecIn);
  218. v.f = vecIn;
  219. v.i = vsubq(vdupq_n_s16(INV_NEWTON_INIT_F16), v.i);
  220. vecW = vmulq(vecSx, v.f);
  221. // v.f = v.f * (8 + w * (-28 + w * (56 + w * (-70 + w *(56 + w * (-28 + w * (8 - w)))))));
  222. vecTmp = vsubq(vdupq_n_f16(8.0f16), vecW);
  223. vecTmp = vfmasq_n_f16(vecW, vecTmp, -28.0f16);
  224. vecTmp = vfmasq_n_f16(vecW, vecTmp, 56.0f16);
  225. vecTmp = vfmasq_n_f16(vecW, vecTmp, -70.0f16);
  226. vecTmp = vfmasq_n_f16(vecW, vecTmp, 56.0f16);
  227. vecTmp = vfmasq_n_f16(vecW, vecTmp, -28.0f16);
  228. vecTmp = vfmasq_n_f16(vecW, vecTmp, 8.0f16);
  229. v.f = vmulq(v.f, vecTmp);
  230. v.f = vdupq_m_n_f16(v.f, F16INFINITY, vcmpeqq_n_f16(vecIn, 0.0f));
  231. /*
  232. * restore sign
  233. */
  234. v.f = vnegq_m(v.f, v.f, vcmpltq_n_f16(vecIn, 0.0f));
  235. return v.f;
  236. }
  237. __STATIC_INLINE f16x8_t vtanhq_f16(
  238. f16x8_t val)
  239. {
  240. f16x8_t x =
  241. vminnmq_f16(vmaxnmq_f16(val, vdupq_n_f16(-10.f16)), vdupq_n_f16(10.0f16));
  242. f16x8_t exp2x = vexpq_f16(vmulq_n_f16(x, 2.f16));
  243. f16x8_t num = vsubq_n_f16(exp2x, 1.f16);
  244. f16x8_t den = vaddq_n_f16(exp2x, 1.f16);
  245. f16x8_t tanh = vmulq_f16(num, vrecip_f16(den));
  246. return tanh;
  247. }
  248. #endif /* defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)*/
  249. #ifdef __cplusplus
  250. }
  251. #endif
  252. #endif /* ARM FLOAT16 SUPPORTED */
  253. #endif /* _ARM_VEC_MATH_F16_H */
  254. /**
  255. *
  256. * End of file.
  257. */