| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- import cmsisdsp as dsp
- import numpy as np
- from scipy import signal
- import matplotlib.pyplot as plt
- from scipy.fftpack import dct
- r = dsp.arm_add_f32(np.array([1.,2,3]),np.array([4.,5,7]))
- print(r)
- r = dsp.arm_add_q31([1,2,3],[4,5,7])
- print(r)
- r = dsp.arm_add_q15([1,2,3],[4,5,7])
- print(r)
- r = dsp.arm_add_q7([-1,2,3],[4,127,7])
- print(r)
- r = dsp.arm_scale_f32([1.,2,3],2)
- print(r)
- r = dsp.arm_scale_q31([0x7FFF,0x3FFF,0x1FFF],1 << 20,2)
- print(r)
- r = dsp.arm_scale_q15([0x7FFF,0x3FFF,0x1FFF],1 << 10,2)
- print(r)
- r = dsp.arm_scale_q7([0x7F,0x3F,0x1F],1 << 5,2)
- print(r)
- r = dsp.arm_negate_f32([1.,2,3])
- print(r)
- r = dsp.arm_negate_q31([1,2,3])
- print(r)
- r = dsp.arm_negate_q15([1,2,3])
- print(r)
- r = dsp.arm_negate_q7(np.array([0x80,0x81,0x82]))
- print(r)
- r = dsp.arm_cmplx_conj_f32([1.,2,3,4])
- print(r)
- r = dsp.arm_cmplx_conj_q31([1,2,3,4])
- print(r)
- r = dsp.arm_cmplx_conj_q15([1,2,3,4])
- print(r)
- r = dsp.arm_cmplx_dot_prod_f32([1.,2,3,4],[1.,2,3,4])
- print(r)
- r = dsp.arm_cmplx_dot_prod_q31([0x1FFF,0x3FFF,0x1FFF,0x3FFF],[0x1FFF,0x3FFF,0x1FFF,0x3FFF])
- print(r)
- r = dsp.arm_cmplx_mult_real_f32([1.0,2,3,4],[5.,5.,5.,5.])
- print(r)
- pidf32 = dsp.arm_pid_instance_f32(Kp=1.0,Ki=1.2,Kd=0.4)
- print(pidf32.Kp())
- print(pidf32.Ki())
- print(pidf32.Kd())
- print(pidf32.A0())
- dsp.arm_pid_init_f32(pidf32,0)
- print(pidf32.A0())
- print(dsp.arm_cos_f32(3.14/4.))
- print(dsp.arm_sqrt_q31(0x7FFF))
- firf32 = dsp.arm_fir_instance_f32()
- dsp.arm_fir_init_f32(firf32,3,[1.,2,3],[0,0,0,0,0,0,0])
- print(firf32.numTaps())
- filtered_x = signal.lfilter([3,2,1.], 1.0, [1,2,3,4,5,1,2,3,4,5])
- print(filtered_x)
- print(dsp.arm_fir_f32(firf32,[1,2,3,4,5]))
- print(dsp.arm_fir_f32(firf32,[1,2,3,4,5]))
- def q31sat(x):
- if x > 0x7FFFFFFF:
- return(np.int32(0x7FFFFFFF))
- elif x < -0x80000000:
- return(np.int32(0x80000000))
- else:
- return(np.int32(x))
- q31satV=np.vectorize(q31sat)
- def toQ31(x):
- return(q31satV(np.round(x * (1<<31))))
- def q15sat(x):
- if x > 0x7FFF:
- return(np.int16(0x7FFF))
- elif x < -0x8000:
- return(np.int16(0x8000))
- else:
- return(np.int16(x))
- q15satV=np.vectorize(q15sat)
- def toQ15(x):
- return(q15satV(np.round(x * (1<<15))))
- def q7sat(x):
- if x > 0x7F:
- return(np.int8(0x7F))
- elif x < -0x80:
- return(np.int8(0x80))
- else:
- return(np.int8(x))
- q7satV=np.vectorize(q7sat)
- def toQ7(x):
- return(q7satV(np.round(x * (1<<7))))
- def Q31toF32(x):
- return(1.0*x / 2**31)
- def Q15toF32(x):
- return(1.0*x / 2**15)
- def Q7toF32(x):
- return(1.0*x / 2**7)
- firq31 = dsp.arm_fir_instance_q31()
- x=np.array([1,2,3,4,5])/10.0
- taps=np.array([1,2,3])/10.0
- xQ31=toQ31(x)
- tapsQ31=toQ31(taps)
- dsp.arm_fir_init_q31(firq31,3,tapsQ31,[0,0,0,0,0,0,0])
- print(firq31.numTaps())
- resultQ31=dsp.arm_fir_q31(firq31,xQ31)
- result=Q31toF32(resultQ31)
- print(result)
- a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]])
- b=np.array([[1.,2,3,4],[5.1,6,7,8],[9.1,10,11,12]])
- print(a+b)
- print("OK")
- v=dsp.arm_mat_add_f32(a,b)
- print(v)
- a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]])
- b=np.array([[1.,2,3],[5.1,6,7],[9.1,10,11],[5,8,4]])
- print(np.dot(a , b))
- v=dsp.arm_mat_mult_f32(a,b)
- print(v)
- def imToReal2D(a):
- ar=np.zeros(np.array(a.shape) * [1,2])
- ar[::,0::2]=a.real
- ar[::,1::2]=a.imag
- return(ar)
- def realToIm2D(ar):
- return(ar[::,0::2] + 1j * ar[::,1::2])
- a=np.array([[1. + 2j,3 + 4j],[5 + 6j,7 + 8j],[9 + 10j,11 + 12j]])
- b=np.array([[1. + 2j, 3 + 5.1j ,6 + 7j],[9.1 + 10j,11 + 5j,8 +4j]])
- print(np.dot(a , b))
- # Convert complex array to real array for use in CMSIS DSP
- ar = imToReal2D(a)
- br = imToReal2D(b)
- v=dsp.arm_mat_cmplx_mult_f32(ar,br)
- print(v)
- a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) / 30.0
- b=np.array([[1.,2,3,4],[5.1,6,7,8],[9.1,10,11,12]]) / 30.0
- print(a+b)
- aQ31=toQ31(a)
- bQ31=toQ31(b)
- v=dsp.arm_mat_add_q31(aQ31,bQ31)
- rQ31=v[1]
- r=Q31toF32(rQ31)
- print(r)
- a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]])
- print(np.transpose(a))
- print(dsp.arm_mat_trans_f32(a))
- a = np.array([[1., 2.], [3., 4.]])
- print(np.linalg.inv(a))
- print(dsp.arm_mat_inverse_f32(a))
- a = np.array([[1., 2.], [3., 4.]])
- print(np.linalg.inv(a))
- print(dsp.arm_mat_inverse_f64(a))
- a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]])
- print(2.5*a)
- print(dsp.arm_mat_scale_f32(a,2.5))
- a=np.array([1.,2,3,4,5,6,7,8,9,10,11,12])
- print(np.max(a))
- print(np.argmax(a))
- print(dsp.arm_max_f32(a))
- print(np.mean(a))
- print(dsp.arm_mean_f32(a))
- print(np.dot(a,a))
- print(dsp.arm_power_f32(a))
- def imToReal1D(a):
- ar=np.zeros(np.array(a.shape) * 2)
- ar[0::2]=a.real
- ar[1::2]=a.imag
- return(ar)
- def realToIm1D(ar):
- return(ar[0::2] + 1j * ar[1::2])
- nb = 16
- signal = np.cos(2 * np.pi * np.arange(nb) / nb)
- result=np.fft.fft(signal)
- print(result)
- signalR = imToReal1D(signal)
- cfftf32=dsp.arm_cfft_instance_f32()
- status=dsp.arm_cfft_init_f32(cfftf32,nb)
- print(status)
- resultR = dsp.arm_cfft_f32(cfftf32,signalR,0,1)
- resultI = realToIm1D(resultR)
- print(resultI)
- signal = signal / 10.0
- result=np.fft.fft(signal)
- print(result)
- signalR = imToReal1D(signal)
- signalRQ31=toQ31(signalR)
- cfftq31=dsp.arm_cfft_instance_q31()
- status=dsp.arm_cfft_init_q31(cfftq31,nb)
- print(status)
- resultR = dsp.arm_cfft_q31(cfftq31,signalRQ31,0,1)
- resultI = realToIm1D(Q31toF32(resultR))*16
- print(resultI)
- signal = signal / 10.0
- result=np.fft.fft(signal)
- print(result)
- signalR = imToReal1D(signal)
- signalRQ15=toQ15(signalR)
- cfftq15=dsp.arm_cfft_instance_q15()
- status=dsp.arm_cfft_init_q15(cfftq15,nb)
- print(status)
- resultR = dsp.arm_cfft_q15(cfftq15,signalRQ15,0,1)
- resultR=Q15toF32(resultR)
- resultI = realToIm1D(resultR)*16
- print(resultI)
- nb = 128
- signal = np.cos(2 * np.pi * np.arange(nb) / nb)
- result=np.fft.fft(signal)
- print(result)
- cfftradix4f32=dsp.arm_cfft_radix4_instance_f32()
- rfftf32=dsp.arm_rfft_instance_f32()
- status=dsp.arm_rfft_init_f32(rfftf32,cfftradix4f32,nb,0,1)
- print(status)
- resultI = dsp.arm_rfft_f32(rfftf32,signal)
- print(result)
- nb = 128
- signal = np.cos(2 * np.pi * np.arange(nb) / nb)
- signalRQ31=toQ31(signal)
- result=np.fft.fft(signal)
- print(result)
- rfftq31=dsp.arm_rfft_instance_q31()
- status=dsp.arm_rfft_init_q31(rfftq31,nb,0,1)
- print(status)
- resultI = dsp.arm_rfft_q31(rfftq31,signalRQ31)
- resultI=Q31toF32(resultI)*(1 << 7)
- print(result)
- nb = 128
- signal = np.cos(2 * np.pi * np.arange(nb) / nb)
- signalRQ15=toQ15(signal)
- result=np.fft.fft(signal)
- print(result)
- rfftq15=dsp.arm_rfft_instance_q15()
- status=dsp.arm_rfft_init_q15(rfftq15,nb,0,1)
- print(status)
- resultI = dsp.arm_rfft_q15(rfftq15,signalRQ15)
- resultI=Q15toF32(resultI)*(1 << 7)
- print(result)
- nb = 128
- nb2=64
- signal = np.cos(2 * np.pi * np.arange(nb) / nb)
- result=dct(signal,4,norm='ortho')
- print(result)
- cfftradix4f32=dsp.arm_cfft_radix4_instance_f32()
- rfftf32=dsp.arm_rfft_instance_f32()
- dct4f32=dsp.arm_dct4_instance_f32()
- status=dsp.arm_dct4_init_f32(dct4f32,rfftf32,cfftradix4f32,nb,nb2,0.125)
- print(status)
- state=np.zeros(2*nb)
- resultI = dsp.arm_dct4_f32(dct4f32,state,signal)
- print(resultI)
- signal = signal / 10.0
- result=dct(signal,4,norm='ortho')
- signalQ31=toQ31(signal)
- cfftradix4q31=dsp.arm_cfft_radix4_instance_q31()
- rfftq31=dsp.arm_rfft_instance_q31()
- dct4q31=dsp.arm_dct4_instance_q31()
- status=dsp.arm_dct4_init_q31(dct4q31,rfftq31,cfftradix4q31,nb,nb2,0x10000000)
- print(status)
- state=np.zeros(2*nb)
- resultI = dsp.arm_dct4_q31(dct4q31,state,signalQ31)
- resultI=Q31toF32(resultI)*(1 << 7)
- nb = 128
- nb2=64
- signal = np.cos(2 * np.pi * np.arange(nb) / nb)
- signal = signal / 10.0
- result=dct(signal,4,norm='ortho')
- signalQ15=toQ15(signal)
- cfftradix4q15=dsp.arm_cfft_radix4_instance_q15()
- rfftq15=dsp.arm_rfft_instance_q15()
- dct4q15=dsp.arm_dct4_instance_q15()
- status=dsp.arm_dct4_init_q15(dct4q15,rfftq15,cfftradix4q15,nb,nb2,0x1000)
- print(status)
- state=np.zeros(2*nb)
- resultI = dsp.arm_dct4_q15(dct4q15,state,signalQ15)
- resultI=Q15toF32(resultI)*(1 << 7)
- from pylab import figure, clf, plot, xlabel, ylabel, xlim, ylim, title, grid, axes, show
- figure(1)
- plot(np.absolute(signal))
- t = np.arange(nb)
- freq = np.fft.fftfreq(t.shape[-1])
- resultmag=np.absolute(result)
- figure(2)
- plot(resultmag)
- figure(3)
- cmsigmag=np.absolute(resultI)
- plot(cmsigmag)
- show()
- biquadf32 = dsp.arm_biquad_casd_df1_inst_f32()
- numStages=1
- state=np.zeros(numStages*4)
- coefs=[1.,2,3,4,5]
- dsp.arm_biquad_cascade_df1_init_f32(biquadf32,1,coefs,state)
- print(dsp.arm_biquad_cascade_df1_f32(biquadf32,[1,2,3,4,5]))
|