| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_cmplx_dot_prod_f16.c
- * Description: Floating-point complex dot product
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "dsp/complex_math_functions_f16.h"
- #if defined(ARM_FLOAT16_SUPPORTED)
- /**
- @ingroup groupCmplxMath
- */
- /**
- @defgroup cmplx_dot_prod Complex Dot Product
- Computes the dot product of two complex vectors.
- The vectors are multiplied element-by-element and then summed.
- The <code>pSrcA</code> points to the first complex input vector and
- <code>pSrcB</code> points to the second complex input vector.
- <code>numSamples</code> specifies the number of complex samples
- and the data in each array is stored in an interleaved fashion
- (real, imag, real, imag, ...).
- Each array has a total of <code>2*numSamples</code> values.
- The underlying algorithm is used:
- <pre>
- realResult = 0;
- imagResult = 0;
- for (n = 0; n < numSamples; n++) {
- realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
- imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
- }
- </pre>
- There are separate functions for floating-point, Q15, and Q31 data types.
- */
- /**
- @addtogroup cmplx_dot_prod
- @{
- */
- /**
- @brief Floating-point complex dot product.
- @param[in] pSrcA points to the first input vector
- @param[in] pSrcB points to the second input vector
- @param[in] numSamples number of samples in each vector
- @param[out] realResult real part of the result returned here
- @param[out] imagResult imaginary part of the result returned here
- @return none
- */
- #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
- #include "arm_helium_utils.h"
- void arm_cmplx_dot_prod_f16(
- const float16_t * pSrcA,
- const float16_t * pSrcB,
- uint32_t numSamples,
- float16_t * realResult,
- float16_t * imagResult)
- {
- int32_t blkCnt;
- float16_t real_sum, imag_sum;
- f16x8_t vecSrcA, vecSrcB;
- f16x8_t vec_acc = vdupq_n_f16(0.0f16);
- f16x8_t vecSrcC, vecSrcD;
- blkCnt = (numSamples >> 3);
- blkCnt -= 1;
- if (blkCnt > 0) {
- /* should give more freedom to generate stall free code */
- vecSrcA = vld1q( pSrcA);
- vecSrcB = vld1q( pSrcB);
- pSrcA += 8;
- pSrcB += 8;
- while (blkCnt > 0) {
- vec_acc = vcmlaq(vec_acc, vecSrcA, vecSrcB);
- vecSrcC = vld1q(pSrcA);
- pSrcA += 8;
- vec_acc = vcmlaq_rot90(vec_acc, vecSrcA, vecSrcB);
- vecSrcD = vld1q(pSrcB);
- pSrcB += 8;
- vec_acc = vcmlaq(vec_acc, vecSrcC, vecSrcD);
- vecSrcA = vld1q(pSrcA);
- pSrcA += 8;
- vec_acc = vcmlaq_rot90(vec_acc, vecSrcC, vecSrcD);
- vecSrcB = vld1q(pSrcB);
- pSrcB += 8;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /* process last elements out of the loop avoid the armclang breaking the SW pipeline */
- vec_acc = vcmlaq(vec_acc, vecSrcA, vecSrcB);
- vecSrcC = vld1q(pSrcA);
- vec_acc = vcmlaq_rot90(vec_acc, vecSrcA, vecSrcB);
- vecSrcD = vld1q(pSrcB);
- vec_acc = vcmlaq(vec_acc, vecSrcC, vecSrcD);
- vec_acc = vcmlaq_rot90(vec_acc, vecSrcC, vecSrcD);
- /*
- * tail
- */
- blkCnt = CMPLX_DIM * (numSamples & 7);
- while (blkCnt > 0) {
- mve_pred16_t p = vctp16q(blkCnt);
- pSrcA += 8;
- pSrcB += 8;
- vecSrcA = vldrhq_z_f16(pSrcA, p);
- vecSrcB = vldrhq_z_f16(pSrcB, p);
- vec_acc = vcmlaq_m(vec_acc, vecSrcA, vecSrcB, p);
- vec_acc = vcmlaq_rot90_m(vec_acc, vecSrcA, vecSrcB, p);
- blkCnt -= 8;
- }
- } else {
- /* small vector */
- blkCnt = numSamples * CMPLX_DIM;
- vec_acc = vdupq_n_f16(0.0f16);
- do {
- mve_pred16_t p = vctp16q(blkCnt);
- vecSrcA = vldrhq_z_f16(pSrcA, p);
- vecSrcB = vldrhq_z_f16(pSrcB, p);
- vec_acc = vcmlaq_m(vec_acc, vecSrcA, vecSrcB, p);
- vec_acc = vcmlaq_rot90_m(vec_acc, vecSrcA, vecSrcB, p);
- /*
- * Decrement the blkCnt loop counter
- * Advance vector source and destination pointers
- */
- pSrcA += 8;
- pSrcB += 8;
- blkCnt -= 8;
- }
- while (blkCnt > 0);
- }
- /* Sum the partial parts */
- mve_cmplx_sum_intra_r_i_f16(vec_acc, real_sum, imag_sum);
- /*
- * Store the real and imaginary results in the destination buffers
- */
- *realResult = real_sum;
- *imagResult = imag_sum;
- }
- #else
- void arm_cmplx_dot_prod_f16(
- const float16_t * pSrcA,
- const float16_t * pSrcB,
- uint32_t numSamples,
- float16_t * realResult,
- float16_t * imagResult)
- {
- uint32_t blkCnt; /* Loop counter */
- _Float16 real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result variables */
- _Float16 a0,b0,c0,d0;
- #if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
- while (blkCnt > 0U)
- {
- a0 = *pSrcA++;
- b0 = *pSrcA++;
- c0 = *pSrcB++;
- d0 = *pSrcB++;
- real_sum += a0 * c0;
- imag_sum += a0 * d0;
- real_sum -= b0 * d0;
- imag_sum += b0 * c0;
- a0 = *pSrcA++;
- b0 = *pSrcA++;
- c0 = *pSrcB++;
- d0 = *pSrcB++;
- real_sum += a0 * c0;
- imag_sum += a0 * d0;
- real_sum -= b0 * d0;
- imag_sum += b0 * c0;
- a0 = *pSrcA++;
- b0 = *pSrcA++;
- c0 = *pSrcB++;
- d0 = *pSrcB++;
- real_sum += a0 * c0;
- imag_sum += a0 * d0;
- real_sum -= b0 * d0;
- imag_sum += b0 * c0;
- a0 = *pSrcA++;
- b0 = *pSrcA++;
- c0 = *pSrcB++;
- d0 = *pSrcB++;
- real_sum += a0 * c0;
- imag_sum += a0 * d0;
- real_sum -= b0 * d0;
- imag_sum += b0 * c0;
- /* Decrement loop counter */
- blkCnt--;
- }
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
- #else
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
- #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
- while (blkCnt > 0U)
- {
- a0 = *pSrcA++;
- b0 = *pSrcA++;
- c0 = *pSrcB++;
- d0 = *pSrcB++;
- real_sum += a0 * c0;
- imag_sum += a0 * d0;
- real_sum -= b0 * d0;
- imag_sum += b0 * c0;
- /* Decrement loop counter */
- blkCnt--;
- }
- /* Store real and imaginary result in destination buffer. */
- *realResult = real_sum;
- *imagResult = imag_sum;
- }
- #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
- /**
- @} end of cmplx_dot_prod group
- */
- #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */
|