| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_cmplx_mag_f16.c
- * Description: Floating-point complex magnitude
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "dsp/complex_math_functions_f16.h"
- #if defined(ARM_FLOAT16_SUPPORTED)
- /**
- @ingroup groupCmplxMath
- */
- /**
- @defgroup cmplx_mag Complex Magnitude
- Computes the magnitude of the elements of a complex data vector.
- The <code>pSrc</code> points to the source data and
- <code>pDst</code> points to the where the result should be written.
- <code>numSamples</code> specifies the number of complex samples
- in the input array and the data is stored in an interleaved fashion
- (real, imag, real, imag, ...).
- The input array has a total of <code>2*numSamples</code> values;
- the output array has a total of <code>numSamples</code> values.
- The underlying algorithm is used:
- <pre>
- for (n = 0; n < numSamples; n++) {
- pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
- }
- </pre>
- There are separate functions for floating-point, Q15, and Q31 data types.
- */
- /**
- @addtogroup cmplx_mag
- @{
- */
- /**
- @brief Floating-point complex magnitude.
- @param[in] pSrc points to input vector
- @param[out] pDst points to output vector
- @param[in] numSamples number of samples in each vector
- @return none
- */
- #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
- #include "arm_helium_utils.h"
- void arm_cmplx_mag_f16(
- const float16_t * pSrc,
- float16_t * pDst,
- uint32_t numSamples)
- {
- int32_t blockSize = numSamples; /* loop counters */
- uint32_t blkCnt; /* loop counters */
- f16x8x2_t vecSrc;
- f16x8_t sum;
- /* Compute 4 complex samples at a time */
- blkCnt = blockSize >> 3;
- while (blkCnt > 0U)
- {
- q15x8_t newtonStartVec;
- f16x8_t sumHalf, invSqrt;
- vecSrc = vld2q(pSrc);
- pSrc += 16;
- sum = vmulq(vecSrc.val[0], vecSrc.val[0]);
- sum = vfmaq(sum, vecSrc.val[1], vecSrc.val[1]);
- /*
- * inlined Fast SQRT using inverse SQRT newton-raphson method
- */
- /* compute initial value */
- newtonStartVec = vdupq_n_s16(INVSQRT_MAGIC_F16) - vshrq((q15x8_t) sum, 1);
- sumHalf = sum * 0.5f;
- /*
- * compute 3 x iterations
- *
- * The more iterations, the more accuracy.
- * If you need to trade a bit of accuracy for more performance,
- * you can comment out the 3rd use of the macro.
- */
- INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, (f16x8_t) newtonStartVec);
- INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, invSqrt);
- INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, invSqrt);
- /*
- * set negative values to 0
- */
- invSqrt = vdupq_m(invSqrt, (float16_t)0.0f, vcmpltq(invSqrt, (float16_t)0.0f));
- /*
- * sqrt(x) = x * invSqrt(x)
- */
- sum = vmulq(sum, invSqrt);
- vstrhq_f16(pDst, sum);
- pDst += 8;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = blockSize & 7;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp16q(blkCnt);
- q15x8_t newtonStartVec;
- f16x8_t sumHalf, invSqrt;
- vecSrc = vld2q((float16_t const *)pSrc);
- sum = vmulq(vecSrc.val[0], vecSrc.val[0]);
- sum = vfmaq(sum, vecSrc.val[1], vecSrc.val[1]);
- /*
- * inlined Fast SQRT using inverse SQRT newton-raphson method
- */
- /* compute initial value */
- newtonStartVec = vdupq_n_s16(INVSQRT_MAGIC_F16) - vshrq((q15x8_t) sum, 1);
- sumHalf = vmulq(sum, (float16_t)0.5);
- /*
- * compute 2 x iterations
- */
- INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, (f16x8_t) newtonStartVec);
- INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, invSqrt);
- /*
- * set negative values to 0
- */
- invSqrt = vdupq_m(invSqrt, (float16_t)0.0, vcmpltq(invSqrt, (float16_t)0.0));
- /*
- * sqrt(x) = x * invSqrt(x)
- */
- sum = vmulq(sum, invSqrt);
- vstrhq_p_f16(pDst, sum, p0);
- }
- }
- #else
- void arm_cmplx_mag_f16(
- const float16_t * pSrc,
- float16_t * pDst,
- uint32_t numSamples)
- {
- uint32_t blkCnt; /* loop counter */
- _Float16 real, imag; /* Temporary variables to hold input values */
- #if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
- while (blkCnt > 0U)
- {
- /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
- real = *pSrc++;
- imag = *pSrc++;
- /* store result in destination buffer. */
- arm_sqrt_f16((real * real) + (imag * imag), pDst++);
- real = *pSrc++;
- imag = *pSrc++;
- arm_sqrt_f16((real * real) + (imag * imag), pDst++);
- real = *pSrc++;
- imag = *pSrc++;
- arm_sqrt_f16((real * real) + (imag * imag), pDst++);
- real = *pSrc++;
- imag = *pSrc++;
- arm_sqrt_f16((real * real) + (imag * imag), pDst++);
- /* Decrement loop counter */
- blkCnt--;
- }
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
- #else
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
- #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
- while (blkCnt > 0U)
- {
- /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
- real = *pSrc++;
- imag = *pSrc++;
- /* store result in destination buffer. */
- arm_sqrt_f16((real * real) + (imag * imag), pDst++);
- /* Decrement loop counter */
- blkCnt--;
- }
- }
- #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
- /**
- @} end of cmplx_mag group
- */
- #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */
|