| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_spline_interp_f32.c
- * Description: Floating-point cubic spline interpolation
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "dsp/interpolation_functions.h"
- /**
- @ingroup groupInterpolation
- */
- /**
- @defgroup SplineInterpolate Cubic Spline Interpolation
-
- Spline interpolation is a method of interpolation where the interpolant
- is a piecewise-defined polynomial called "spline".
-
- @par Introduction
- Given a function f defined on the interval [a,b], a set of n nodes x(i)
- where a=x(1)<x(2)<...<x(n)=b and a set of n values y(i) = f(x(i)),
- a cubic spline interpolant S(x) is defined as:
- <pre>
- S1(x) x(1) < x < x(2)
- S(x) = ...
- Sn-1(x) x(n-1) < x < x(n)
- </pre>
- where
- <pre>
- Si(x) = a_i+b_i(x-xi)+c_i(x-xi)^2+d_i(x-xi)^3 i=1, ..., n-1
- </pre>
-
- @par Algorithm
- Having defined h(i) = x(i+1) - x(i)
- <pre>
- h(i-1)c(i-1)+2[h(i-1)+h(i)]c(i)+h(i)c(i+1) = 3/h(i)*[a(i+1)-a(i)]-3/h(i-1)*[a(i)-a(i-1)] i=2, ..., n-1
- </pre>
- It is possible to write the previous conditions in matrix form (Ax=B).
- In order to solve the system two boundary conidtions are needed.
- - Natural spline: S1''(x1)=2*c(1)=0 ; Sn''(xn)=2*c(n)=0
- In matrix form:
- <pre>
- | 1 0 0 ... 0 0 0 || c(1) | | 0 |
- | h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] |
- | ... ... ... ... ... ... ... || ... |=| ... |
- | 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
- | 0 0 0 ... 0 0 1 || c(n) | | 0 |
- </pre>
- - Parabolic runout spline: S1''(x1)=2*c(1)=S2''(x2)=2*c(2) ; Sn-1''(xn-1)=2*c(n-1)=Sn''(xn)=2*c(n)
- In matrix form:
- <pre>
- | 1 -1 0 ... 0 0 0 || c(1) | | 0 |
- | h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] |
- | ... ... ... ... ... ... ... || ... |=| ... |
- | 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
- | 0 0 0 ... 0 -1 1 || c(n) | | 0 |
- </pre>
- A is a tridiagonal matrix (a band matrix of bandwidth 3) of size N=n+1. The factorization
- algorithms (A=LU) can be simplified considerably because a large number of zeros appear
- in regular patterns. The Crout method has been used:
- 1) Solve LZ=B
- <pre>
- u(1,2) = A(1,2)/A(1,1)
- z(1) = B(1)/l(11)
-
- FOR i=2, ..., N-1
- l(i,i) = A(i,i)-A(i,i-1)u(i-1,i)
- u(i,i+1) = a(i,i+1)/l(i,i)
- z(i) = [B(i)-A(i,i-1)z(i-1)]/l(i,i)
-
- l(N,N) = A(N,N)-A(N,N-1)u(N-1,N)
- z(N) = [B(N)-A(N,N-1)z(N-1)]/l(N,N)
- </pre>
- 2) Solve UX=Z
- <pre>
- c(N)=z(N)
-
- FOR i=N-1, ..., 1
- c(i)=z(i)-u(i,i+1)c(i+1)
- </pre>
- c(i) for i=1, ..., n-1 are needed to compute the n-1 polynomials.
- b(i) and d(i) are computed as:
- - b(i) = [y(i+1)-y(i)]/h(i)-h(i)*[c(i+1)+2*c(i)]/3
- - d(i) = [c(i+1)-c(i)]/[3*h(i)]
- Moreover, a(i)=y(i).
- @par Behaviour outside the given intervals
- It is possible to compute the interpolated vector for x values outside the
- input range (xq<x(1); xq>x(n)). The coefficients used to compute the y values for
- xq<x(1) are going to be the ones used for the first interval, while for xq>x(n) the
- coefficients used for the last interval.
-
- */
- /**
- @addtogroup SplineInterpolate
- @{
- */
- /**
- * @brief Processing function for the floating-point cubic spline interpolation.
- * @param[in] S points to an instance of the floating-point spline structure.
- * @param[in] xq points to the x values of the interpolated data points.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples of output data.
- */
- void arm_spline_f32(
- arm_spline_instance_f32 * S,
- const float32_t * xq,
- float32_t * pDst,
- uint32_t blockSize)
- {
- const float32_t * x = S->x;
- const float32_t * y = S->y;
- int32_t n = S->n_x;
- /* Coefficients (a==y for i<=n-1) */
- float32_t * b = (S->coeffs);
- float32_t * c = (S->coeffs)+(n-1);
- float32_t * d = (S->coeffs)+(2*(n-1));
- const float32_t * pXq = xq;
- int32_t blkCnt = (int32_t)blockSize;
- int32_t blkCnt2;
- int32_t i;
- float32_t x_sc;
- #ifdef ARM_MATH_NEON
- float32x4_t xiv;
- float32x4_t aiv;
- float32x4_t biv;
- float32x4_t civ;
- float32x4_t div;
- float32x4_t xqv;
- float32x4_t temp;
- float32x4_t diff;
- float32x4_t yv;
- #endif
- /* Create output for x(i)<x<x(i+1) */
- for (i=0; i<n-1; i++)
- {
- #ifdef ARM_MATH_NEON
- xiv = vdupq_n_f32(x[i]);
- aiv = vdupq_n_f32(y[i]);
- biv = vdupq_n_f32(b[i]);
- civ = vdupq_n_f32(c[i]);
- div = vdupq_n_f32(d[i]);
- while( *(pXq+4) <= x[i+1] && blkCnt > 4 )
- {
- /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */
- xqv = vld1q_f32(pXq);
- pXq+=4;
-
- /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */
- diff = vsubq_f32(xqv, xiv);
- temp = diff;
-
- /* y(i) = a(i) + ... */
- yv = aiv;
- /* ... + b(i)*(x-x(i)) + ... */
- yv = vmlaq_f32(yv, biv, temp);
- /* ... + c(i)*(x-x(i))^2 + ... */
- temp = vmulq_f32(temp, diff);
- yv = vmlaq_f32(yv, civ, temp);
- /* ... + d(i)*(x-x(i))^3 */
- temp = vmulq_f32(temp, diff);
- yv = vmlaq_f32(yv, div, temp);
-
- /* Store [y(k) y(k+1) y(k+2) y(k+3)] */
- vst1q_f32(pDst, yv);
- pDst+=4;
-
- blkCnt-=4;
- }
- #endif
- while( *pXq <= x[i+1] && blkCnt > 0 )
- {
- x_sc = *pXq++;
- *pDst = y[i]+b[i]*(x_sc-x[i])+c[i]*(x_sc-x[i])*(x_sc-x[i])+d[i]*(x_sc-x[i])*(x_sc-x[i])*(x_sc-x[i]);
- pDst++;
- blkCnt--;
- }
- }
- /* Create output for remaining samples (x>=x(n)) */
- #ifdef ARM_MATH_NEON
- /* Compute 4 outputs at a time */
- blkCnt2 = blkCnt >> 2;
- while(blkCnt2 > 0)
- {
- /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */
- xqv = vld1q_f32(pXq);
- pXq+=4;
-
- /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */
- diff = vsubq_f32(xqv, xiv);
- temp = diff;
- /* y(i) = a(i) + ... */
- yv = aiv;
- /* ... + b(i)*(x-x(i)) + ... */
- yv = vmlaq_f32(yv, biv, temp);
- /* ... + c(i)*(x-x(i))^2 + ... */
- temp = vmulq_f32(temp, diff);
- yv = vmlaq_f32(yv, civ, temp);
- /* ... + d(i)*(x-x(i))^3 */
- temp = vmulq_f32(temp, diff);
- yv = vmlaq_f32(yv, div, temp);
- /* Store [y(k) y(k+1) y(k+2) y(k+3)] */
- vst1q_f32(pDst, yv);
- pDst+=4;
- blkCnt2--;
- }
- /* Tail */
- blkCnt2 = blkCnt & 3;
- #else
- blkCnt2 = blkCnt;
- #endif
- while(blkCnt2 > 0)
- {
- x_sc = *pXq++;
-
- *pDst = y[i-1]+b[i-1]*(x_sc-x[i-1])+c[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])+d[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])*(x_sc-x[i-1]);
-
- pDst++;
- blkCnt2--;
- }
- }
- /**
- @} end of SplineInterpolate group
- */
|