arm_mat_cholesky_f32.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438
  1. /* ----------------------------------------------------------------------
  2. * Project: CMSIS DSP Library
  3. * Title: arm_mat_cholesky_f32.c
  4. * Description: Floating-point Cholesky decomposition
  5. *
  6. * $Date: 05 October 2021
  7. * $Revision: V1.9.1
  8. *
  9. * Target Processor: Cortex-M and Cortex-A cores
  10. * -------------------------------------------------------------------- */
  11. /*
  12. * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
  13. *
  14. * SPDX-License-Identifier: Apache-2.0
  15. *
  16. * Licensed under the Apache License, Version 2.0 (the License); you may
  17. * not use this file except in compliance with the License.
  18. * You may obtain a copy of the License at
  19. *
  20. * www.apache.org/licenses/LICENSE-2.0
  21. *
  22. * Unless required by applicable law or agreed to in writing, software
  23. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  24. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  25. * See the License for the specific language governing permissions and
  26. * limitations under the License.
  27. */
  28. #include "dsp/matrix_functions.h"
  29. /**
  30. @ingroup groupMatrix
  31. */
  32. /**
  33. @defgroup MatrixChol Cholesky and LDLT decompositions
  34. Computes the Cholesky or LDL^t decomposition of a matrix.
  35. If the input matrix does not have a decomposition, then the
  36. algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
  37. */
  38. /**
  39. @addtogroup MatrixChol
  40. @{
  41. */
  42. /**
  43. * @brief Floating-point Cholesky decomposition of positive-definite matrix.
  44. * @param[in] pSrc points to the instance of the input floating-point matrix structure.
  45. * @param[out] pDst points to the instance of the output floating-point matrix structure.
  46. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
  47. * @return execution status
  48. - \ref ARM_MATH_SUCCESS : Operation successful
  49. - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
  50. - \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
  51. * @par
  52. * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
  53. * The decomposition of A is returning a lower triangular matrix U such that A = U U^t
  54. */
  55. #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
  56. #include "arm_helium_utils.h"
  57. arm_status arm_mat_cholesky_f32(
  58. const arm_matrix_instance_f32 * pSrc,
  59. arm_matrix_instance_f32 * pDst)
  60. {
  61. arm_status status; /* status of matrix inverse */
  62. #ifdef ARM_MATH_MATRIX_CHECK
  63. /* Check for matrix mismatch condition */
  64. if ((pSrc->numRows != pSrc->numCols) ||
  65. (pDst->numRows != pDst->numCols) ||
  66. (pSrc->numRows != pDst->numRows) )
  67. {
  68. /* Set status as ARM_MATH_SIZE_MISMATCH */
  69. status = ARM_MATH_SIZE_MISMATCH;
  70. }
  71. else
  72. #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
  73. {
  74. int i,j,k;
  75. int n = pSrc->numRows;
  76. float32_t invSqrtVj;
  77. float32_t *pA,*pG;
  78. int kCnt;
  79. mve_pred16_t p0;
  80. f32x4_t acc, acc0, acc1, acc2, acc3;
  81. f32x4_t vecGi;
  82. f32x4_t vecGj,vecGj0,vecGj1,vecGj2,vecGj3;
  83. pA = pSrc->pData;
  84. pG = pDst->pData;
  85. for(i=0 ;i < n ; i++)
  86. {
  87. for(j=i ; j+3 < n ; j+=4)
  88. {
  89. pG[(j + 0) * n + i] = pA[(j + 0) * n + i];
  90. pG[(j + 1) * n + i] = pA[(j + 1) * n + i];
  91. pG[(j + 2) * n + i] = pA[(j + 2) * n + i];
  92. pG[(j + 3) * n + i] = pA[(j + 3) * n + i];
  93. kCnt = i;
  94. acc0 = vdupq_n_f32(0.0f);
  95. acc1 = vdupq_n_f32(0.0f);
  96. acc2 = vdupq_n_f32(0.0f);
  97. acc3 = vdupq_n_f32(0.0f);
  98. for(k=0; k < i ; k+=4)
  99. {
  100. p0 = vctp32q(kCnt);
  101. vecGi=vldrwq_z_f32(&pG[i * n + k],p0);
  102. vecGj0=vldrwq_z_f32(&pG[(j + 0) * n + k],p0);
  103. vecGj1=vldrwq_z_f32(&pG[(j + 1) * n + k],p0);
  104. vecGj2=vldrwq_z_f32(&pG[(j + 2) * n + k],p0);
  105. vecGj3=vldrwq_z_f32(&pG[(j + 3) * n + k],p0);
  106. acc0 = vfmaq_m(acc0, vecGi, vecGj0, p0);
  107. acc1 = vfmaq_m(acc1, vecGi, vecGj1, p0);
  108. acc2 = vfmaq_m(acc2, vecGi, vecGj2, p0);
  109. acc3 = vfmaq_m(acc3, vecGi, vecGj3, p0);
  110. kCnt -= 4;
  111. }
  112. pG[(j + 0) * n + i] -= vecAddAcrossF32Mve(acc0);
  113. pG[(j + 1) * n + i] -= vecAddAcrossF32Mve(acc1);
  114. pG[(j + 2) * n + i] -= vecAddAcrossF32Mve(acc2);
  115. pG[(j + 3) * n + i] -= vecAddAcrossF32Mve(acc3);
  116. }
  117. for(; j < n ; j++)
  118. {
  119. pG[j * n + i] = pA[j * n + i];
  120. kCnt = i;
  121. acc = vdupq_n_f32(0.0f);
  122. for(k=0; k < i ; k+=4)
  123. {
  124. p0 = vctp32q(kCnt);
  125. vecGi=vldrwq_z_f32(&pG[i * n + k],p0);
  126. vecGj=vldrwq_z_f32(&pG[j * n + k],p0);
  127. acc = vfmaq_m(acc, vecGi, vecGj,p0);
  128. kCnt -= 4;
  129. }
  130. pG[j * n + i] -= vecAddAcrossF32Mve(acc);
  131. }
  132. if (pG[i * n + i] <= 0.0f)
  133. {
  134. return(ARM_MATH_DECOMPOSITION_FAILURE);
  135. }
  136. invSqrtVj = 1.0f/sqrtf(pG[i * n + i]);
  137. for(j=i; j < n ; j++)
  138. {
  139. pG[j * n + i] = pG[j * n + i] * invSqrtVj ;
  140. }
  141. }
  142. status = ARM_MATH_SUCCESS;
  143. }
  144. /* Return to application */
  145. return (status);
  146. }
  147. #else
  148. #if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
  149. arm_status arm_mat_cholesky_f32(
  150. const arm_matrix_instance_f32 * pSrc,
  151. arm_matrix_instance_f32 * pDst)
  152. {
  153. arm_status status; /* status of matrix inverse */
  154. #ifdef ARM_MATH_MATRIX_CHECK
  155. /* Check for matrix mismatch condition */
  156. if ((pSrc->numRows != pSrc->numCols) ||
  157. (pDst->numRows != pDst->numCols) ||
  158. (pSrc->numRows != pDst->numRows) )
  159. {
  160. /* Set status as ARM_MATH_SIZE_MISMATCH */
  161. status = ARM_MATH_SIZE_MISMATCH;
  162. }
  163. else
  164. #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
  165. {
  166. int i,j,k;
  167. int n = pSrc->numRows;
  168. float32_t invSqrtVj;
  169. float32_t *pA,*pG;
  170. int kCnt;
  171. f32x4_t acc, acc0, acc1, acc2, acc3;
  172. f32x4_t vecGi;
  173. f32x4_t vecGj,vecGj0,vecGj1,vecGj2,vecGj3;
  174. #if !defined(__aarch64__)
  175. f32x2_t tmp = vdup_n_f32(0);
  176. #endif
  177. float32_t sum=0.0f;
  178. float32_t sum0=0.0f,sum1=0.0f,sum2=0.0f,sum3=0.0f;
  179. pA = pSrc->pData;
  180. pG = pDst->pData;
  181. for(i=0 ;i < n ; i++)
  182. {
  183. for(j=i ; j+3 < n ; j+=4)
  184. {
  185. pG[(j + 0) * n + i] = pA[(j + 0) * n + i];
  186. pG[(j + 1) * n + i] = pA[(j + 1) * n + i];
  187. pG[(j + 2) * n + i] = pA[(j + 2) * n + i];
  188. pG[(j + 3) * n + i] = pA[(j + 3) * n + i];
  189. acc0 = vdupq_n_f32(0.0f);
  190. acc1 = vdupq_n_f32(0.0f);
  191. acc2 = vdupq_n_f32(0.0f);
  192. acc3 = vdupq_n_f32(0.0f);
  193. kCnt = i >> 2;
  194. k=0;
  195. while(kCnt > 0)
  196. {
  197. vecGi=vld1q_f32(&pG[i * n + k]);
  198. vecGj0=vld1q_f32(&pG[(j + 0) * n + k]);
  199. vecGj1=vld1q_f32(&pG[(j + 1) * n + k]);
  200. vecGj2=vld1q_f32(&pG[(j + 2) * n + k]);
  201. vecGj3=vld1q_f32(&pG[(j + 3) * n + k]);
  202. acc0 = vfmaq_f32(acc0, vecGi, vecGj0);
  203. acc1 = vfmaq_f32(acc1, vecGi, vecGj1);
  204. acc2 = vfmaq_f32(acc2, vecGi, vecGj2);
  205. acc3 = vfmaq_f32(acc3, vecGi, vecGj3);
  206. kCnt--;
  207. k+=4;
  208. }
  209. #if defined(__aarch64__)
  210. sum0 = vpadds_f32(vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0)));
  211. sum1 = vpadds_f32(vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1)));
  212. sum2 = vpadds_f32(vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2)));
  213. sum3 = vpadds_f32(vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3)));
  214. #else
  215. tmp = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
  216. sum0 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
  217. tmp = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
  218. sum1 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
  219. tmp = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
  220. sum2 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
  221. tmp = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
  222. sum3 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
  223. #endif
  224. kCnt = i & 3;
  225. while(kCnt > 0)
  226. {
  227. sum0 = sum0 + pG[i * n + k] * pG[(j + 0) * n + k];
  228. sum1 = sum1 + pG[i * n + k] * pG[(j + 1) * n + k];
  229. sum2 = sum2 + pG[i * n + k] * pG[(j + 2) * n + k];
  230. sum3 = sum3 + pG[i * n + k] * pG[(j + 3) * n + k];
  231. kCnt--;
  232. k++;
  233. }
  234. pG[(j + 0) * n + i] -= sum0;
  235. pG[(j + 1) * n + i] -= sum1;
  236. pG[(j + 2) * n + i] -= sum2;
  237. pG[(j + 3) * n + i] -= sum3;
  238. }
  239. for(; j < n ; j++)
  240. {
  241. pG[j * n + i] = pA[j * n + i];
  242. acc = vdupq_n_f32(0.0f);
  243. kCnt = i >> 2;
  244. k=0;
  245. while(kCnt > 0)
  246. {
  247. vecGi=vld1q_f32(&pG[i * n + k]);
  248. vecGj=vld1q_f32(&pG[j * n + k]);
  249. acc = vfmaq_f32(acc, vecGi, vecGj);
  250. kCnt--;
  251. k+=4;
  252. }
  253. #if defined(__aarch64__)
  254. sum = vpadds_f32(vpadd_f32(vget_low_f32(acc), vget_high_f32(acc)));
  255. #else
  256. tmp = vpadd_f32(vget_low_f32(acc), vget_high_f32(acc));
  257. sum = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
  258. #endif
  259. kCnt = i & 3;
  260. while(kCnt > 0)
  261. {
  262. sum = sum + pG[i * n + k] * pG[(j + 0) * n + k];
  263. kCnt--;
  264. k++;
  265. }
  266. pG[j * n + i] -= sum;
  267. }
  268. if (pG[i * n + i] <= 0.0f)
  269. {
  270. return(ARM_MATH_DECOMPOSITION_FAILURE);
  271. }
  272. invSqrtVj = 1.0f/sqrtf(pG[i * n + i]);
  273. for(j=i; j < n ; j++)
  274. {
  275. pG[j * n + i] = pG[j * n + i] * invSqrtVj ;
  276. }
  277. }
  278. status = ARM_MATH_SUCCESS;
  279. }
  280. /* Return to application */
  281. return (status);
  282. }
  283. #else
  284. arm_status arm_mat_cholesky_f32(
  285. const arm_matrix_instance_f32 * pSrc,
  286. arm_matrix_instance_f32 * pDst)
  287. {
  288. arm_status status; /* status of matrix inverse */
  289. #ifdef ARM_MATH_MATRIX_CHECK
  290. /* Check for matrix mismatch condition */
  291. if ((pSrc->numRows != pSrc->numCols) ||
  292. (pDst->numRows != pDst->numCols) ||
  293. (pSrc->numRows != pDst->numRows) )
  294. {
  295. /* Set status as ARM_MATH_SIZE_MISMATCH */
  296. status = ARM_MATH_SIZE_MISMATCH;
  297. }
  298. else
  299. #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
  300. {
  301. int i,j,k;
  302. int n = pSrc->numRows;
  303. float32_t invSqrtVj;
  304. float32_t *pA,*pG;
  305. pA = pSrc->pData;
  306. pG = pDst->pData;
  307. for(i=0 ; i < n ; i++)
  308. {
  309. for(j=i ; j < n ; j++)
  310. {
  311. pG[j * n + i] = pA[j * n + i];
  312. for(k=0; k < i ; k++)
  313. {
  314. pG[j * n + i] = pG[j * n + i] - pG[i * n + k] * pG[j * n + k];
  315. }
  316. }
  317. if (pG[i * n + i] <= 0.0f)
  318. {
  319. return(ARM_MATH_DECOMPOSITION_FAILURE);
  320. }
  321. invSqrtVj = 1.0f/sqrtf(pG[i * n + i]);
  322. for(j=i ; j < n ; j++)
  323. {
  324. pG[j * n + i] = pG[j * n + i] * invSqrtVj ;
  325. }
  326. }
  327. status = ARM_MATH_SUCCESS;
  328. }
  329. /* Return to application */
  330. return (status);
  331. }
  332. #endif /* #if defined(ARM_MATH_NEON) */
  333. #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
  334. /**
  335. @} end of MatrixChol group
  336. */