| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_cholesky_f64.c
- * Description: Floating-point Cholesky decomposition
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "dsp/matrix_functions.h"
- /**
- @ingroup groupMatrix
- */
- /**
- @addtogroup MatrixChol
- @{
- */
- /**
- * @brief Floating-point Cholesky decomposition of positive-definite matrix.
- * @param[in] pSrc points to the instance of the input floating-point matrix structure.
- * @param[out] pDst points to the instance of the output floating-point matrix structure.
- * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
- * @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- - \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
- * @par
- * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
- * The decomposition of A is returning a lower triangular matrix U such that A = U U^t
- */
- arm_status arm_mat_cholesky_f64(
- const arm_matrix_instance_f64 * pSrc,
- arm_matrix_instance_f64 * pDst)
- {
- arm_status status; /* status of matrix inverse */
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pDst->numRows != pDst->numCols) ||
- (pSrc->numRows != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- int i,j,k;
- int n = pSrc->numRows;
- float64_t invSqrtVj;
- float64_t *pA,*pG;
- pA = pSrc->pData;
- pG = pDst->pData;
-
- for(i=0 ; i < n ; i++)
- {
- for(j=i ; j < n ; j++)
- {
- pG[j * n + i] = pA[j * n + i];
- for(k=0; k < i ; k++)
- {
- pG[j * n + i] = pG[j * n + i] - pG[i * n + k] * pG[j * n + k];
- }
- }
- if (pG[i * n + i] <= 0.0)
- {
- return(ARM_MATH_DECOMPOSITION_FAILURE);
- }
- invSqrtVj = 1.0/sqrt(pG[i * n + i]);
- for(j=i ; j < n ; j++)
- {
- pG[j * n + i] = pG[j * n + i] * invSqrtVj ;
- }
- }
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
- }
- /**
- @} end of MatrixChol group
- */
|