| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_inverse_f32.c
- * Description: Floating-point matrix inverse
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "dsp/matrix_functions.h"
- /**
- @ingroup groupMatrix
- */
- /**
- @defgroup MatrixInv Matrix Inverse
- Computes the inverse of a matrix.
- The inverse is defined only if the input matrix is square and non-singular (the determinant is non-zero).
- The function checks that the input and output matrices are square and of the same size.
- Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix
- inversion of floating-point matrices.
- @par Algorithm
- The Gauss-Jordan method is used to find the inverse.
- The algorithm performs a sequence of elementary row-operations until it
- reduces the input matrix to an identity matrix. Applying the same sequence
- of elementary row-operations to an identity matrix yields the inverse matrix.
- If the input matrix is singular, then the algorithm terminates and returns error status
- <code>ARM_MATH_SINGULAR</code>.
- \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"
- */
- /**
- @addtogroup MatrixInv
- @{
- */
- /**
- @brief Floating-point matrix inverse.
- @param[in] pSrc points to input matrix structure. The source matrix is modified by the function.
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- - \ref ARM_MATH_SINGULAR : Input matrix is found to be singular (non-invertible)
- */
- #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
- arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
- float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
- float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
- uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
- uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
- float32_t *pTmpA, *pTmpB;
- float32_t in = 0.0f; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
- uint32_t blkCnt;
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
- || (pSrc->numRows != pDst->numRows))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _ _ _ _ _
- * | | a11 a12 | | | 1 0 | | | X11 X12 |
- * | | | | | | | = | |
- * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
- * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
- *----------------------------------------------------------------------------------------------------------------*/
- /*
- * Working pointer for destination matrix
- */
- pOutT1 = pOut;
- /*
- * Loop over the number of rows
- */
- rowCnt = numRows;
- /*
- * Making the destination matrix as identity matrix
- */
- while (rowCnt > 0U)
- {
- /*
- * Writing all zeroes in lower triangle of the destination matrix
- */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /*
- * Writing all ones in the diagonal of the destination matrix
- */
- *pOutT1++ = 1.0f;
- /*
- * Writing all zeroes in upper triangle of the destination matrix
- */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /*
- * Decrement the loop counter
- */
- rowCnt--;
- }
- /*
- * Loop over the number of columns of the input matrix.
- * All the elements in each column are processed by the row operations
- */
- loopCnt = numCols;
- /*
- * Index modifier to navigate through the columns
- */
- l = 0U;
- while (loopCnt > 0U)
- {
- /*
- * Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular.
- */
- /*
- * Working pointer for the input matrix that points
- * * to the pivot element of the particular row
- */
- pInT1 = pIn + (l * numCols);
- /*
- * Working pointer for the destination matrix that points
- * * to the pivot element of the particular row
- */
- pOutT1 = pOut + (l * numCols);
- /*
- * Temporary variable to hold the pivot value
- */
- in = *pInT1;
-
- /*
- * Check if the pivot element is zero
- */
- if (*pInT1 == 0.0f)
- {
- /*
- * Loop over the number rows present below
- */
- for (i = 1U; i < numRows-l; i++)
- {
- /*
- * Update the input and destination pointers
- */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * i);
- /*
- * Check if there is a non zero pivot element to
- * * replace in the rows below
- */
- if (*pInT2 != 0.0f)
- {
- f32x4_t vecA, vecB;
- /*
- * Loop over number of columns
- * * to the right of the pilot element
- */
- pTmpA = pInT1;
- pTmpB = pInT2;
- blkCnt = (numCols - l) >> 2;
- while (blkCnt > 0U)
- {
-
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_f32(pTmpB, vecA);
- vstrwq_f32(pTmpA, vecB);
- pTmpA += 4;
- pTmpB += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = (numCols - l) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_p_f32(pTmpB, vecA, p0);
- vstrwq_p_f32(pTmpA, vecB, p0);
- }
- pInT1 += numCols - l;
- pInT2 += numCols - l;
- pTmpA = pOutT1;
- pTmpB = pOutT2;
- blkCnt = numCols >> 2;
- while (blkCnt > 0U)
- {
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_f32(pTmpB, vecA);
- vstrwq_f32(pTmpA, vecB);
- pTmpA += 4;
- pTmpB += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = numCols & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_p_f32(pTmpB, vecA, p0);
- vstrwq_p_f32(pTmpA, vecB, p0);
- }
- pOutT1 += numCols;
- pOutT2 += numCols;
- /*
- * Flag to indicate whether exchange is done or not
- */
- flag = 1U;
- /*
- * Break after exchange is done
- */
- break;
- }
-
- }
- }
- /*
- * Update the status if the matrix is singular
- */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
- /*
- * Points to the pivot row of input and destination matrices
- */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
- /*
- * Temporary pointers to the pivot row pointers
- */
- pInT1 = pPivotRowIn;
- pOutT1 = pPivotRowDst;
- /*
- * Pivot element of the row
- */
- in = *(pIn + (l * numCols));
- pTmpA = pInT1;
- f32x4_t invIn = vdupq_n_f32(1.0f / in);
- blkCnt = (numCols - l) >> 2;
- f32x4_t vecA;
- while (blkCnt > 0U)
- {
- *(f32x4_t *) pTmpA = *(f32x4_t *) pTmpA * invIn;
- pTmpA += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = (numCols - l) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
-
- vecA = vldrwq_f32(pTmpA);
- vecA = vecA * invIn;
- vstrwq_p_f32(pTmpA, vecA, p0);
- }
- pInT1 += numCols - l;
- /*
- * Loop over number of columns
- * * to the right of the pilot element
- */
- pTmpA = pOutT1;
- blkCnt = numCols >> 2;
- while (blkCnt > 0U)
- {
- *(f32x4_t *) pTmpA = *(f32x4_t *) pTmpA *invIn;
- pTmpA += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numCols & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecA = vldrwq_f32(pTmpA);
- vecA = vecA * invIn;
- vstrwq_p_f32(pTmpA, vecA, p0);
- }
- pOutT1 += numCols;
- /*
- * Replace the rows with the sum of that row and a multiple of row i
- * * so that each new element in column i above row i is zero.
- */
- /*
- * Temporary pointers for input and destination matrices
- */
- pInT1 = pIn;
- pOutT1 = pOut;
- for (i = 0U; i < numRows; i++)
- {
- /*
- * Check for the pivot element
- */
- if (i == l)
- {
- /*
- * If the processing element is the pivot element,
- * only the columns to the right are to be processed
- */
- pInT1 += numCols - l;
- pOutT1 += numCols;
- }
- else
- {
- /*
- * Element of the reference row
- */
- /*
- * Working pointers for input and destination pivot rows
- */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
- /*
- * Loop over the number of columns to the right of the pivot element,
- * to replace the elements in the input matrix
- */
- in = *pInT1;
- f32x4_t tmpV = vdupq_n_f32(in);
- blkCnt = (numCols - l) >> 2;
- while (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- /*
- * Replace the element by the sum of that row
- * and a multiple of the reference row
- */
- vec1 = vldrwq_f32(pInT1);
- vec2 = vldrwq_f32(pPRT_in);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_f32(pInT1, vec1);
- pPRT_in += 4;
- pInT1 += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = (numCols - l) & 3;
- if (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- mve_pred16_t p0 = vctp32q(blkCnt);
- vec1 = vldrwq_f32(pInT1);
- vec2 = vldrwq_f32(pPRT_in);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_p_f32(pInT1, vec1, p0);
- pInT1 += blkCnt;
- }
- blkCnt = numCols >> 2;
- while (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- /*
- * Replace the element by the sum of that row
- * and a multiple of the reference row
- */
- vec1 = vldrwq_f32(pOutT1);
- vec2 = vldrwq_f32(pPRT_pDst);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_f32(pOutT1, vec1);
- pPRT_pDst += 4;
- pOutT1 += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numCols & 3;
- if (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- mve_pred16_t p0 = vctp32q(blkCnt);
- vec1 = vldrwq_f32(pOutT1);
- vec2 = vldrwq_f32(pPRT_pDst);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_p_f32(pOutT1, vec1, p0);
- pInT2 += blkCnt;
- pOutT1 += blkCnt;
- }
- }
- /*
- * Increment the temporary input pointer
- */
- pInT1 = pInT1 + l;
- }
- /*
- * Increment the input pointer
- */
- pIn++;
- /*
- * Decrement the loop counter
- */
- loopCnt--;
- /*
- * Increment the index modifier
- */
- l++;
- }
- /*
- * Set status as ARM_MATH_SUCCESS
- */
- status = ARM_MATH_SUCCESS;
- if ((flag != 1U) && (in == 0.0f))
- {
- pIn = pSrc->pData;
- for (i = 0; i < numRows * numCols; i++)
- {
- if (pIn[i] != 0.0f)
- break;
- }
- if (i == numRows * numCols)
- status = ARM_MATH_SINGULAR;
- }
- }
- /* Return to application */
- return (status);
- }
- #else
- #if defined(ARM_MATH_NEON)
- arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
- float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
- float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
- uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
- uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
- float32_t Xchg, in = 0.0f, in1; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
- float32x4_t vec1;
- float32x4_t vec2;
- float32x4_t tmpV;
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
- || (pSrc->numRows != pDst->numRows))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _
- * | a11 a12 | 1 0 | | X11 X12 |
- * | | | = | |
- * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
- * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
- *----------------------------------------------------------------------------------------------------------------*/
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
- /* Loop over the number of rows */
- rowCnt = numRows;
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Decrement the loop counter */
- rowCnt--;
- }
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
- /* Index modifier to navigate through the columns */
- l = 0U;
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0f)
- {
- /* Loop over the number rows present below */
- for (i = 1U; i < numRows - l; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * i);
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0f)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- j = numCols - l;
- while (j > 0U)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over number of columns of the destination matrix */
- j = numCols;
- while (j > 0U)
- {
- /* Exchange the row elements of the destination matrix */
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
- /* Decrement the loop counter */
- j--;
- }
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
- /* Break after exchange is done */
- break;
- }
-
- }
- }
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pInT2 = pPivotRowDst;
- /* Pivot element of the row */
- in = *pPivotRowIn;
- tmpV = vdupq_n_f32(1.0f/in);
- /* Loop over number of columns
- * to the right of the pilot element */
- j = (numCols - l) >> 2;
- while (j > 0U)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- vec1 = vld1q_f32(pInT1);
- vec1 = vmulq_f32(vec1, tmpV);
- vst1q_f32(pInT1, vec1);
- pInT1 += 4;
- /* Decrement the loop counter */
- j--;
- }
- /* Tail */
- j = (numCols - l) & 3;
- while (j > 0U)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- in1 = *pInT1;
- *pInT1++ = in1 / in;
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over number of columns of the destination matrix */
- j = numCols >> 2;
- while (j > 0U)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- vec1 = vld1q_f32(pInT2);
- vec1 = vmulq_f32(vec1, tmpV);
- vst1q_f32(pInT2, vec1);
- pInT2 += 4;
-
- /* Decrement the loop counter */
- j--;
- }
- /* Tail */
- j = numCols & 3;
- while (j > 0U)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- in1 = *pInT2;
- *pInT2++ = in1 / in;
- /* Decrement the loop counter */
- j--;
- }
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pInT2 = pOut;
- /* index used to check for pivot element */
- i = 0U;
- /* Loop over number of rows */
- /* to be replaced by the sum of that row and a multiple of row i */
- k = numRows;
- while (k > 0U)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
- pInT2 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
- tmpV = vdupq_n_f32(in);
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- j = (numCols - l) >> 2;
-
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- vec1 = vld1q_f32(pInT1);
- vec2 = vld1q_f32(pPRT_in);
- vec1 = vmlsq_f32(vec1, tmpV, vec2);
- vst1q_f32(pInT1, vec1);
- pPRT_in += 4;
- pInT1 += 4;
- /* Decrement the loop counter */
- j--;
- }
- /* Tail */
- j = (numCols - l) & 3;
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT1;
- *pInT1++ = in1 - (in * *pPRT_in++);
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- j = numCols >> 2;
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- vec1 = vld1q_f32(pInT2);
- vec2 = vld1q_f32(pPRT_pDst);
- vec1 = vmlsq_f32(vec1, tmpV, vec2);
- vst1q_f32(pInT2, vec1);
- pPRT_pDst += 4;
- pInT2 += 4;
- /* Decrement the loop counter */
- j--;
- }
- /* Tail */
- j = numCols & 3;
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT2;
- *pInT2++ = in1 - (in * *pPRT_pDst++);
- /* Decrement the loop counter */
- j--;
- }
- }
- /* Increment the temporary input pointer */
- pInT1 = pInT1 + l;
- /* Decrement the loop counter */
- k--;
- /* Increment the pivot index */
- i++;
- }
- /* Increment the input pointer */
- pIn++;
- /* Decrement the loop counter */
- loopCnt--;
- /* Increment the index modifier */
- l++;
- }
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- if ((flag != 1U) && (in == 0.0f))
- {
- pIn = pSrc->pData;
- for (i = 0; i < numRows * numCols; i++)
- {
- if (pIn[i] != 0.0f)
- break;
- }
- if (i == numRows * numCols)
- status = ARM_MATH_SINGULAR;
- }
- }
- /* Return to application */
- return (status);
- }
- #else
- arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
- float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
- float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
- uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
- uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
- #if defined (ARM_MATH_DSP)
- float32_t Xchg, in = 0.0f, in1; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, k,l; /* loop counters */
- arm_status status; /* status of matrix inverse */
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pDst->numRows != pDst->numCols) ||
- (pSrc->numRows != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _
- * | a11 a12 | 1 0 | | X11 X12 |
- * | | | = | |
- * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
- * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
- *----------------------------------------------------------------------------------------------------------------*/
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
- /* Loop over the number of rows */
- rowCnt = numRows;
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Decrement loop counter */
- rowCnt--;
- }
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
- /* Index modifier to navigate through the columns */
- l = 0U;
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
-
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0f)
- {
- /* Loop over the number rows present below */
- for (i = 1U; i < numRows - l; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * i);
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0f)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- j = numCols - l;
- while (j > 0U)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over number of columns of the destination matrix */
- j = numCols;
- while (j > 0U)
- {
- /* Exchange the row elements of the destination matrix */
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
- /* Decrement loop counter */
- j--;
- }
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
- /* Break after exchange is done */
- break;
- }
- /* Decrement loop counter */
- }
- }
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pInT2 = pPivotRowDst;
- /* Pivot element of the row */
- in = *pPivotRowIn;
- /* Loop over number of columns
- * to the right of the pilot element */
- j = (numCols - l);
- while (j > 0U)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- in1 = *pInT1;
- *pInT1++ = in1 / in;
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over number of columns of the destination matrix */
- j = numCols;
- while (j > 0U)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- in1 = *pInT2;
- *pInT2++ = in1 / in;
- /* Decrement the loop counter */
- j--;
- }
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pInT2 = pOut;
- /* index used to check for pivot element */
- i = 0U;
- /* Loop over number of rows */
- /* to be replaced by the sum of that row and a multiple of row i */
- k = numRows;
- while (k > 0U)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
- pInT2 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- j = (numCols - l);
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT1;
- *pInT1++ = in1 - (in * *pPRT_in++);
- /* Decrement the loop counter */
- j--;
- }
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- j = numCols;
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT2;
- *pInT2++ = in1 - (in * *pPRT_pDst++);
- /* Decrement loop counter */
- j--;
- }
- }
- /* Increment temporary input pointer */
- pInT1 = pInT1 + l;
- /* Decrement loop counter */
- k--;
- /* Increment pivot index */
- i++;
- }
- /* Increment the input pointer */
- pIn++;
- /* Decrement the loop counter */
- loopCnt--;
- /* Increment the index modifier */
- l++;
- }
- #else
- float32_t Xchg, in = 0.0f; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pDst->numRows != pDst->numCols) ||
- (pSrc->numRows != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _ _ _ _ _
- * | | a11 a12 | | | 1 0 | | | X11 X12 |
- * | | | | | | | = | |
- * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
- * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
- *----------------------------------------------------------------------------------------------------------------*/
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
- /* Loop over the number of rows */
- rowCnt = numRows;
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /* Decrement loop counter */
- rowCnt--;
- }
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
- /* Index modifier to navigate through the columns */
- l = 0U;
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0f)
- {
- /* Loop over the number rows present below */
- for (i = 1U; i < numRows-l; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * i);
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0f)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
- }
- for (j = 0U; j < numCols; j++)
- {
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
- }
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
- /* Break after exchange is done */
- break;
- }
- }
- }
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pOutT1 = pPivotRowDst;
- /* Pivot element of the row */
- in = *(pIn + (l * numCols));
- /* Loop over number of columns
- * to the right of the pilot element */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- *pInT1 = *pInT1 / in;
- pInT1++;
- }
- for (j = 0U; j < numCols; j++)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- *pOutT1 = *pOutT1 / in;
- pOutT1++;
- }
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pOutT1 = pOut;
- for (i = 0U; i < numRows; i++)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
- pOutT1 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- *pInT1 = *pInT1 - (in * *pPRT_in++);
- pInT1++;
- }
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- for (j = 0U; j < numCols; j++)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- *pOutT1 = *pOutT1 - (in * *pPRT_pDst++);
- pOutT1++;
- }
- }
- /* Increment temporary input pointer */
- pInT1 = pInT1 + l;
- }
- /* Increment the input pointer */
- pIn++;
- /* Decrement the loop counter */
- loopCnt--;
- /* Increment the index modifier */
- l++;
- }
- #endif /* #if defined (ARM_MATH_DSP) */
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- if ((flag != 1U) && (in == 0.0f))
- {
- pIn = pSrc->pData;
- for (i = 0; i < numRows * numCols; i++)
- {
- if (pIn[i] != 0.0f)
- break;
- }
- if (i == numRows * numCols)
- status = ARM_MATH_SINGULAR;
- }
- }
- /* Return to application */
- return (status);
- }
- #endif /* #if defined(ARM_MATH_NEON) */
- #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
- /**
- @} end of MatrixInv group
- */
|