| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_rotation2quaternion_f32.c
- * Description: Floating-point rotation to quaternion conversion
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "dsp/quaternion_math_functions.h"
- #include <math.h>
- #define RI(x,y) r[(3*(x) + (y))]
- /**
- @ingroup QuatConv
- */
- /**
- @defgroup RotQuat Rotation to Quaternion
- Conversions from rotation to quaternion.
- */
- /**
- @addtogroup RotQuat
- @{
- */
- /**
- * @brief Conversion of a rotation matrix to an equivalent quaternion.
- * @param[in] pInputRotations points to an array 3x3 rotation matrix (in row order)
- * @param[out] pOutputQuaternions points to an array quaternions
- * @param[in] nbQuaternions number of quaternions in the array
- * @return none.
- *
- * q and -q are representing the same rotation. This ambiguity must be taken into
- * account when using the output of this function.
- *
- */
- #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
- #include "arm_helium_utils.h"
- #define R00 vgetq_lane(q1,0)
- #define R01 vgetq_lane(q1,1)
- #define R02 vgetq_lane(q1,2)
- #define R10 vgetq_lane(q1,3)
- #define R11 vgetq_lane(q2,0)
- #define R12 vgetq_lane(q2,1)
- #define R20 vgetq_lane(q2,2)
- #define R21 vgetq_lane(q2,3)
- #define R22 ro22
- void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
- float32_t *pOutputQuaternions,
- uint32_t nbQuaternions)
- {
- float32_t ro22, trace;
- f32x4_t q1,q2, q;
- float32_t doubler;
- float32_t s;
- q = vdupq_n_f32(0.0f);
- for(uint32_t nb=0; nb < nbQuaternions; nb++)
- {
- q1 = vld1q(pInputRotations);
- pInputRotations += 4;
- q2 = vld1q(pInputRotations);
- pInputRotations += 4;
- ro22 = *pInputRotations++;
- trace = R00 + R11 + R22;
- if (trace > 0)
- {
- (void)arm_sqrt_f32(trace + 1.0f, &doubler) ; // invs=4*qw
- doubler = 2.0f*doubler;
- s = 1.0f / doubler;
- q1 = vmulq_n_f32(q1,s);
- q2 = vmulq_n_f32(q2,s);
- q[0] = 0.25f * doubler;
- q[1] = R21 - R12;
- q[2] = R02 - R20;
- q[3] = R10 - R01;
- }
- else if ((R00 > R11) && (R00 > R22) )
- {
- (void)arm_sqrt_f32(1.0f + R00 - R11 - R22,&doubler); // invs=4*qx
- doubler = 2.0f*doubler;
- s = 1.0f / doubler;
- q1 = vmulq_n_f32(q1,s);
- q2 = vmulq_n_f32(q2,s);
- q[0] = R21 - R12;
- q[1] = 0.25f * doubler;
- q[2] = R01 + R10;
- q[3] = R02 + R20;
- }
- else if (R11 > R22)
- {
- (void)arm_sqrt_f32(1.0f + R11 - R00 - R22,&doubler); // invs=4*qy
- doubler = 2.0f*doubler;
- s = 1.0f / doubler;
- q1 = vmulq_n_f32(q1,s);
- q2 = vmulq_n_f32(q2,s);
- q[0] = R02 - R20;
- q[1] = R01 + R10;
- q[2] = 0.25f * doubler;
- q[3] = R12 + R21;
- }
- else
- {
- (void)arm_sqrt_f32(1.0f + R22 - R00 - R11,&doubler); // invs=4*qz
- doubler = 2.0f*doubler;
- s = 1.0f / doubler;
- q1 = vmulq_n_f32(q1,s);
- q2 = vmulq_n_f32(q2,s);
- q[0] = R10 - R01;
- q[1] = R02 + R20;
- q[2] = R12 + R21;
- q[3] = 0.25f * doubler;
- }
- vst1q(pOutputQuaternions, q);
- pOutputQuaternions += 4;
- }
- }
- #else
- void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
- float32_t *pOutputQuaternions,
- uint32_t nbQuaternions)
- {
- uint32_t nb;
- for(nb=0; nb < nbQuaternions; nb++)
- {
- const float32_t *r=&pInputRotations[nb*9];
- float32_t *q=&pOutputQuaternions[nb*4];
- float32_t trace = RI(0,0) + RI(1,1) + RI(2,2);
- float32_t doubler;
- float32_t s;
- if (trace > 0.0f)
- {
- doubler = sqrtf(trace + 1.0f) * 2.0f; // invs=4*qw
- s = 1.0f / doubler;
- q[0] = 0.25f * doubler;
- q[1] = (RI(2,1) - RI(1,2)) * s;
- q[2] = (RI(0,2) - RI(2,0)) * s;
- q[3] = (RI(1,0) - RI(0,1)) * s;
- }
- else if ((RI(0,0) > RI(1,1)) && (RI(0,0) > RI(2,2)) )
- {
- doubler = sqrtf(1.0f + RI(0,0) - RI(1,1) - RI(2,2)) * 2.0f; // invs=4*qx
- s = 1.0f / doubler;
- q[0] = (RI(2,1) - RI(1,2)) * s;
- q[1] = 0.25f * doubler;
- q[2] = (RI(0,1) + RI(1,0)) * s;
- q[3] = (RI(0,2) + RI(2,0)) * s;
- }
- else if (RI(1,1) > RI(2,2))
- {
- doubler = sqrtf(1.0f + RI(1,1) - RI(0,0) - RI(2,2)) * 2.0f; // invs=4*qy
- s = 1.0f / doubler;
- q[0] = (RI(0,2) - RI(2,0)) * s;
- q[1] = (RI(0,1) + RI(1,0)) * s;
- q[2] = 0.25f * doubler;
- q[3] = (RI(1,2) + RI(2,1)) * s;
- }
- else
- {
- doubler = sqrtf(1.0f + RI(2,2) - RI(0,0) - RI(1,1)) * 2.0f; // invs=4*qz
- s = 1.0f / doubler;
- q[0] = (RI(1,0) - RI(0,1)) * s;
- q[1] = (RI(0,2) + RI(2,0)) * s;
- q[2] = (RI(1,2) + RI(2,1)) * s;
- q[3] = 0.25f * doubler;
- }
- }
- }
- #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
- /**
- @} end of RotQuat group
- */
|