arm_svm_rbf_predict_f16.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. /* ----------------------------------------------------------------------
  2. * Project: CMSIS DSP Library
  3. * Title: arm_svm_rbf_predict_f16.c
  4. * Description: SVM Radial Basis Function Classifier
  5. *
  6. * $Date: 23 April 2021
  7. * $Revision: V1.9.0
  8. *
  9. * Target Processor: Cortex-M and Cortex-A cores
  10. * -------------------------------------------------------------------- */
  11. /*
  12. * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
  13. *
  14. * SPDX-License-Identifier: Apache-2.0
  15. *
  16. * Licensed under the Apache License, Version 2.0 (the License); you may
  17. * not use this file except in compliance with the License.
  18. * You may obtain a copy of the License at
  19. *
  20. * www.apache.org/licenses/LICENSE-2.0
  21. *
  22. * Unless required by applicable law or agreed to in writing, software
  23. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  24. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  25. * See the License for the specific language governing permissions and
  26. * limitations under the License.
  27. */
  28. #include "dsp/svm_functions_f16.h"
  29. #if defined(ARM_FLOAT16_SUPPORTED)
  30. #include <limits.h>
  31. #include <math.h>
  32. /**
  33. * @addtogroup rbfsvm
  34. * @{
  35. */
  36. /**
  37. * @brief SVM rbf prediction
  38. * @param[in] S Pointer to an instance of the rbf SVM structure.
  39. * @param[in] in Pointer to input vector
  40. * @param[out] pResult decision value
  41. * @return none.
  42. *
  43. */
  44. #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
  45. #include "arm_helium_utils.h"
  46. #include "arm_vec_math_f16.h"
  47. void arm_svm_rbf_predict_f16(
  48. const arm_svm_rbf_instance_f16 *S,
  49. const float16_t * in,
  50. int32_t * pResult)
  51. {
  52. /* inlined Matrix x Vector function interleaved with dot prod */
  53. uint32_t numRows = S->nbOfSupportVectors;
  54. uint32_t numCols = S->vectorDimension;
  55. const float16_t *pSupport = S->supportVectors;
  56. const float16_t *pSrcA = pSupport;
  57. const float16_t *pInA0;
  58. const float16_t *pInA1;
  59. uint32_t row;
  60. uint32_t blkCnt; /* loop counters */
  61. const float16_t *pDualCoef = S->dualCoefficients;
  62. _Float16 sum = S->intercept;
  63. f16x8_t vSum = vdupq_n_f16(0.0f16);
  64. row = numRows;
  65. /*
  66. * compute 4 rows in parrallel
  67. */
  68. while (row >= 4) {
  69. const float16_t *pInA2, *pInA3;
  70. float16_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
  71. f16x8_t vecIn, acc0, acc1, acc2, acc3;
  72. float16_t const *pSrcVecPtr = in;
  73. /*
  74. * Initialize the pointers to 4 consecutive MatrixA rows
  75. */
  76. pInA0 = pSrcA;
  77. pInA1 = pInA0 + numCols;
  78. pInA2 = pInA1 + numCols;
  79. pInA3 = pInA2 + numCols;
  80. /*
  81. * Initialize the vector pointer
  82. */
  83. pInVec = pSrcVecPtr;
  84. /*
  85. * reset accumulators
  86. */
  87. acc0 = vdupq_n_f16(0.0f16);
  88. acc1 = vdupq_n_f16(0.0f16);
  89. acc2 = vdupq_n_f16(0.0f16);
  90. acc3 = vdupq_n_f16(0.0f16);
  91. pSrcA0Vec = pInA0;
  92. pSrcA1Vec = pInA1;
  93. pSrcA2Vec = pInA2;
  94. pSrcA3Vec = pInA3;
  95. blkCnt = numCols >> 3;
  96. while (blkCnt > 0U) {
  97. f16x8_t vecA;
  98. f16x8_t vecDif;
  99. vecIn = vld1q(pInVec);
  100. pInVec += 8;
  101. vecA = vld1q(pSrcA0Vec);
  102. pSrcA0Vec += 8;
  103. vecDif = vsubq(vecIn, vecA);
  104. acc0 = vfmaq(acc0, vecDif, vecDif);
  105. vecA = vld1q(pSrcA1Vec);
  106. pSrcA1Vec += 8;
  107. vecDif = vsubq(vecIn, vecA);
  108. acc1 = vfmaq(acc1, vecDif, vecDif);
  109. vecA = vld1q(pSrcA2Vec);
  110. pSrcA2Vec += 8;
  111. vecDif = vsubq(vecIn, vecA);
  112. acc2 = vfmaq(acc2, vecDif, vecDif);
  113. vecA = vld1q(pSrcA3Vec);
  114. pSrcA3Vec += 8;
  115. vecDif = vsubq(vecIn, vecA);
  116. acc3 = vfmaq(acc3, vecDif, vecDif);
  117. blkCnt--;
  118. }
  119. /*
  120. * tail
  121. * (will be merged thru tail predication)
  122. */
  123. blkCnt = numCols & 7;
  124. if (blkCnt > 0U) {
  125. mve_pred16_t p0 = vctp16q(blkCnt);
  126. f16x8_t vecA;
  127. f16x8_t vecDif;
  128. vecIn = vldrhq_z_f16(pInVec, p0);
  129. vecA = vldrhq_z_f16(pSrcA0Vec, p0);
  130. vecDif = vsubq(vecIn, vecA);
  131. acc0 = vfmaq(acc0, vecDif, vecDif);
  132. vecA = vldrhq_z_f16(pSrcA1Vec, p0);
  133. vecDif = vsubq(vecIn, vecA);
  134. acc1 = vfmaq(acc1, vecDif, vecDif);
  135. vecA = vldrhq_z_f16(pSrcA2Vec, p0);;
  136. vecDif = vsubq(vecIn, vecA);
  137. acc2 = vfmaq(acc2, vecDif, vecDif);
  138. vecA = vldrhq_z_f16(pSrcA3Vec, p0);
  139. vecDif = vsubq(vecIn, vecA);
  140. acc3 = vfmaq(acc3, vecDif, vecDif);
  141. }
  142. /*
  143. * Sum the partial parts
  144. */
  145. //sum += *pDualCoef++ * expf(-S->gamma * vecReduceF16Mve(acc0));
  146. f16x8_t vtmp = vuninitializedq_f16();
  147. vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
  148. vtmp = vsetq_lane(vecAddAcrossF16Mve(acc1), vtmp, 1);
  149. vtmp = vsetq_lane(vecAddAcrossF16Mve(acc2), vtmp, 2);
  150. vtmp = vsetq_lane(vecAddAcrossF16Mve(acc3), vtmp, 3);
  151. vSum =
  152. vfmaq_m_f16(vSum, vld1q(pDualCoef),
  153. vexpq_f16(vmulq_n_f16(vtmp, -(_Float16)S->gamma)),vctp16q(4));
  154. pDualCoef += 4;
  155. pSrcA += numCols * 4;
  156. /*
  157. * Decrement the row loop counter
  158. */
  159. row -= 4;
  160. }
  161. /*
  162. * compute 2 rows in parrallel
  163. */
  164. if (row >= 2) {
  165. float16_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
  166. f16x8_t vecIn, acc0, acc1;
  167. float16_t const *pSrcVecPtr = in;
  168. /*
  169. * Initialize the pointers to 2 consecutive MatrixA rows
  170. */
  171. pInA0 = pSrcA;
  172. pInA1 = pInA0 + numCols;
  173. /*
  174. * Initialize the vector pointer
  175. */
  176. pInVec = pSrcVecPtr;
  177. /*
  178. * reset accumulators
  179. */
  180. acc0 = vdupq_n_f16(0.0f16);
  181. acc1 = vdupq_n_f16(0.0f16);
  182. pSrcA0Vec = pInA0;
  183. pSrcA1Vec = pInA1;
  184. blkCnt = numCols >> 3;
  185. while (blkCnt > 0U) {
  186. f16x8_t vecA;
  187. f16x8_t vecDif;
  188. vecIn = vld1q(pInVec);
  189. pInVec += 8;
  190. vecA = vld1q(pSrcA0Vec);
  191. pSrcA0Vec += 8;
  192. vecDif = vsubq(vecIn, vecA);
  193. acc0 = vfmaq(acc0, vecDif, vecDif);;
  194. vecA = vld1q(pSrcA1Vec);
  195. pSrcA1Vec += 8;
  196. vecDif = vsubq(vecIn, vecA);
  197. acc1 = vfmaq(acc1, vecDif, vecDif);
  198. blkCnt--;
  199. }
  200. /*
  201. * tail
  202. * (will be merged thru tail predication)
  203. */
  204. blkCnt = numCols & 7;
  205. if (blkCnt > 0U) {
  206. mve_pred16_t p0 = vctp16q(blkCnt);
  207. f16x8_t vecA, vecDif;
  208. vecIn = vldrhq_z_f16(pInVec, p0);
  209. vecA = vldrhq_z_f16(pSrcA0Vec, p0);
  210. vecDif = vsubq(vecIn, vecA);
  211. acc0 = vfmaq(acc0, vecDif, vecDif);
  212. vecA = vldrhq_z_f16(pSrcA1Vec, p0);
  213. vecDif = vsubq(vecIn, vecA);
  214. acc1 = vfmaq(acc1, vecDif, vecDif);
  215. }
  216. /*
  217. * Sum the partial parts
  218. */
  219. f16x8_t vtmp = vuninitializedq_f16();
  220. vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
  221. vtmp = vsetq_lane(vecAddAcrossF16Mve(acc1), vtmp, 1);
  222. vSum =
  223. vfmaq_m_f16(vSum, vld1q(pDualCoef),
  224. vexpq_f16(vmulq_n_f16(vtmp, -(_Float16)S->gamma)), vctp16q(2));
  225. pDualCoef += 2;
  226. pSrcA += numCols * 2;
  227. row -= 2;
  228. }
  229. if (row >= 1) {
  230. f16x8_t vecIn, acc0;
  231. float16_t const *pSrcA0Vec, *pInVec;
  232. float16_t const *pSrcVecPtr = in;
  233. /*
  234. * Initialize the pointers to last MatrixA row
  235. */
  236. pInA0 = pSrcA;
  237. /*
  238. * Initialize the vector pointer
  239. */
  240. pInVec = pSrcVecPtr;
  241. /*
  242. * reset accumulators
  243. */
  244. acc0 = vdupq_n_f16(0.0f);
  245. pSrcA0Vec = pInA0;
  246. blkCnt = numCols >> 3;
  247. while (blkCnt > 0U) {
  248. f16x8_t vecA, vecDif;
  249. vecIn = vld1q(pInVec);
  250. pInVec += 8;
  251. vecA = vld1q(pSrcA0Vec);
  252. pSrcA0Vec += 8;
  253. vecDif = vsubq(vecIn, vecA);
  254. acc0 = vfmaq(acc0, vecDif, vecDif);
  255. blkCnt--;
  256. }
  257. /*
  258. * tail
  259. * (will be merged thru tail predication)
  260. */
  261. blkCnt = numCols & 7;
  262. if (blkCnt > 0U) {
  263. mve_pred16_t p0 = vctp16q(blkCnt);
  264. f16x8_t vecA, vecDif;
  265. vecIn = vldrhq_z_f16(pInVec, p0);
  266. vecA = vldrhq_z_f16(pSrcA0Vec, p0);
  267. vecDif = vsubq(vecIn, vecA);
  268. acc0 = vfmaq(acc0, vecDif, vecDif);
  269. }
  270. /*
  271. * Sum the partial parts
  272. */
  273. f16x8_t vtmp = vuninitializedq_f16();
  274. vtmp = vsetq_lane(vecAddAcrossF16Mve(acc0), vtmp, 0);
  275. vSum =
  276. vfmaq_m_f16(vSum, vld1q(pDualCoef),
  277. vexpq_f16(vmulq_n_f16(vtmp, -(_Float16)S->gamma)), vctp16q(1));
  278. }
  279. sum += (_Float16)vecAddAcrossF16Mve(vSum);
  280. *pResult = S->classes[STEP(sum)];
  281. }
  282. #else
  283. void arm_svm_rbf_predict_f16(
  284. const arm_svm_rbf_instance_f16 *S,
  285. const float16_t * in,
  286. int32_t * pResult)
  287. {
  288. _Float16 sum=S->intercept;
  289. _Float16 dot=00.f16;
  290. uint32_t i,j;
  291. const float16_t *pSupport = S->supportVectors;
  292. for(i=0; i < S->nbOfSupportVectors; i++)
  293. {
  294. dot=0.0f16;
  295. for(j=0; j < S->vectorDimension; j++)
  296. {
  297. dot = dot + SQ((_Float16)in[j] - (_Float16) *pSupport);
  298. pSupport++;
  299. }
  300. sum += (_Float16)S->dualCoefficients[i] * (_Float16)expf((float32_t)(-(_Float16)S->gamma * (_Float16)dot));
  301. }
  302. *pResult=S->classes[STEP(sum)];
  303. }
  304. #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
  305. /**
  306. * @} end of rbfsvm group
  307. */
  308. #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */