| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_cfft_f32.c
- * Description: Combined Radix Decimation in Frequency CFFT Floating point processing function
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "dsp/transform_functions.h"
- #include "arm_common_tables.h"
- #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
- #include "arm_helium_utils.h"
- #include "arm_vec_fft.h"
- #include "arm_mve_tables.h"
- static float32_t arm_inverse_fft_length_f32(uint16_t fftLen)
- {
- float32_t retValue=1.0;
- switch (fftLen)
- {
- case 4096U:
- retValue = 0.000244140625;
- break;
- case 2048U:
- retValue = 0.00048828125;
- break;
- case 1024U:
- retValue = 0.0009765625f;
- break;
- case 512U:
- retValue = 0.001953125;
- break;
- case 256U:
- retValue = 0.00390625f;
- break;
- case 128U:
- retValue = 0.0078125;
- break;
- case 64U:
- retValue = 0.015625f;
- break;
- case 32U:
- retValue = 0.03125;
- break;
- case 16U:
- retValue = 0.0625f;
- break;
- default:
- break;
- }
- return(retValue);
- }
- static void _arm_radix4_butterfly_f32_mve(const arm_cfft_instance_f32 * S,float32_t * pSrc, uint32_t fftLen)
- {
- f32x4_t vecTmp0, vecTmp1;
- f32x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
- f32x4_t vecA, vecB, vecC, vecD;
- uint32_t blkCnt;
- uint32_t n1, n2;
- uint32_t stage = 0;
- int32_t iter = 1;
- static const int32_t strides[4] = {
- (0 - 16) * (int32_t)sizeof(q31_t *),
- (1 - 16) * (int32_t)sizeof(q31_t *),
- (8 - 16) * (int32_t)sizeof(q31_t *),
- (9 - 16) * (int32_t)sizeof(q31_t *)
- };
- n2 = fftLen;
- n1 = n2;
- n2 >>= 2u;
- for (int k = fftLen / 4u; k > 1; k >>= 2)
- {
- float32_t const *p_rearranged_twiddle_tab_stride1 =
- &S->rearranged_twiddle_stride1[
- S->rearranged_twiddle_tab_stride1_arr[stage]];
- float32_t const *p_rearranged_twiddle_tab_stride2 =
- &S->rearranged_twiddle_stride2[
- S->rearranged_twiddle_tab_stride2_arr[stage]];
- float32_t const *p_rearranged_twiddle_tab_stride3 =
- &S->rearranged_twiddle_stride3[
- S->rearranged_twiddle_tab_stride3_arr[stage]];
- float32_t * pBase = pSrc;
- for (int i = 0; i < iter; i++)
- {
- float32_t *inA = pBase;
- float32_t *inB = inA + n2 * CMPLX_DIM;
- float32_t *inC = inB + n2 * CMPLX_DIM;
- float32_t *inD = inC + n2 * CMPLX_DIM;
- float32_t const *pW1 = p_rearranged_twiddle_tab_stride1;
- float32_t const *pW2 = p_rearranged_twiddle_tab_stride2;
- float32_t const *pW3 = p_rearranged_twiddle_tab_stride3;
- f32x4_t vecW;
- blkCnt = n2 / 2;
- /*
- * load 2 f32 complex pair
- */
- vecA = vldrwq_f32(inA);
- vecC = vldrwq_f32(inC);
- while (blkCnt > 0U)
- {
- vecB = vldrwq_f32(inB);
- vecD = vldrwq_f32(inD);
- vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
- vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
- vecSum1 = vecB + vecD;
- vecDiff1 = vecB - vecD;
- /*
- * [ 1 1 1 1 ] * [ A B C D ]' .* 1
- */
- vecTmp0 = vecSum0 + vecSum1;
- vst1q(inA, vecTmp0);
- inA += 4;
- /*
- * [ 1 -1 1 -1 ] * [ A B C D ]'
- */
- vecTmp0 = vecSum0 - vecSum1;
- /*
- * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
- */
- vecW = vld1q(pW2);
- pW2 += 4;
- vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
- vst1q(inB, vecTmp1);
- inB += 4;
- /*
- * [ 1 -i -1 +i ] * [ A B C D ]'
- */
- vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
- /*
- * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
- */
- vecW = vld1q(pW1);
- pW1 +=4;
- vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
- vst1q(inC, vecTmp1);
- inC += 4;
- /*
- * [ 1 +i -1 -i ] * [ A B C D ]'
- */
- vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
- /*
- * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
- */
- vecW = vld1q(pW3);
- pW3 += 4;
- vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
- vst1q(inD, vecTmp1);
- inD += 4;
- vecA = vldrwq_f32(inA);
- vecC = vldrwq_f32(inC);
- blkCnt--;
- }
- pBase += CMPLX_DIM * n1;
- }
- n1 = n2;
- n2 >>= 2u;
- iter = iter << 2;
- stage++;
- }
- /*
- * start of Last stage process
- */
- uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
- vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
- /* load scheduling */
- vecA = vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
- vecC = vldrwq_gather_base_f32(vecScGathAddr, 16);
- blkCnt = (fftLen >> 3);
- while (blkCnt > 0U)
- {
- vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
- vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
- vecB = vldrwq_gather_base_f32(vecScGathAddr, 8);
- vecD = vldrwq_gather_base_f32(vecScGathAddr, 24);
- vecSum1 = vecB + vecD;
- vecDiff1 = vecB - vecD;
- /* pre-load for next iteration */
- vecA = vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
- vecC = vldrwq_gather_base_f32(vecScGathAddr, 16);
- vecTmp0 = vecSum0 + vecSum1;
- vstrwq_scatter_base_f32(vecScGathAddr, -64, vecTmp0);
- vecTmp0 = vecSum0 - vecSum1;
- vstrwq_scatter_base_f32(vecScGathAddr, -64 + 8, vecTmp0);
- vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
- vstrwq_scatter_base_f32(vecScGathAddr, -64 + 16, vecTmp0);
- vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
- vstrwq_scatter_base_f32(vecScGathAddr, -64 + 24, vecTmp0);
- blkCnt--;
- }
- /*
- * End of last stage process
- */
- }
- static void arm_cfft_radix4by2_f32_mve(const arm_cfft_instance_f32 * S, float32_t *pSrc, uint32_t fftLen)
- {
- float32_t const *pCoefVec;
- float32_t const *pCoef = S->pTwiddle;
- float32_t *pIn0, *pIn1;
- uint32_t n2;
- uint32_t blkCnt;
- f32x4_t vecIn0, vecIn1, vecSum, vecDiff;
- f32x4_t vecCmplxTmp, vecTw;
- n2 = fftLen >> 1;
- pIn0 = pSrc;
- pIn1 = pSrc + fftLen;
- pCoefVec = pCoef;
- blkCnt = n2 / 2;
- while (blkCnt > 0U)
- {
- vecIn0 = *(f32x4_t *) pIn0;
- vecIn1 = *(f32x4_t *) pIn1;
- vecTw = vld1q(pCoefVec);
- pCoefVec += 4;
- vecSum = vecIn0 + vecIn1;
- vecDiff = vecIn0 - vecIn1;
- vecCmplxTmp = MVE_CMPLX_MULT_FLT_Conj_AxB(vecTw, vecDiff);
- vst1q(pIn0, vecSum);
- pIn0 += 4;
- vst1q(pIn1, vecCmplxTmp);
- pIn1 += 4;
- blkCnt--;
- }
- _arm_radix4_butterfly_f32_mve(S, pSrc, n2);
- _arm_radix4_butterfly_f32_mve(S, pSrc + fftLen, n2);
- pIn0 = pSrc;
- }
- static void _arm_radix4_butterfly_inverse_f32_mve(const arm_cfft_instance_f32 * S,float32_t * pSrc, uint32_t fftLen, float32_t onebyfftLen)
- {
- f32x4_t vecTmp0, vecTmp1;
- f32x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
- f32x4_t vecA, vecB, vecC, vecD;
- uint32_t blkCnt;
- uint32_t n1, n2;
- uint32_t stage = 0;
- int32_t iter = 1;
- static const int32_t strides[4] = {
- (0 - 16) * (int32_t)sizeof(q31_t *),
- (1 - 16) * (int32_t)sizeof(q31_t *),
- (8 - 16) * (int32_t)sizeof(q31_t *),
- (9 - 16) * (int32_t)sizeof(q31_t *)
- };
- n2 = fftLen;
- n1 = n2;
- n2 >>= 2u;
- for (int k = fftLen / 4; k > 1; k >>= 2)
- {
- float32_t const *p_rearranged_twiddle_tab_stride1 =
- &S->rearranged_twiddle_stride1[
- S->rearranged_twiddle_tab_stride1_arr[stage]];
- float32_t const *p_rearranged_twiddle_tab_stride2 =
- &S->rearranged_twiddle_stride2[
- S->rearranged_twiddle_tab_stride2_arr[stage]];
- float32_t const *p_rearranged_twiddle_tab_stride3 =
- &S->rearranged_twiddle_stride3[
- S->rearranged_twiddle_tab_stride3_arr[stage]];
- float32_t * pBase = pSrc;
- for (int i = 0; i < iter; i++)
- {
- float32_t *inA = pBase;
- float32_t *inB = inA + n2 * CMPLX_DIM;
- float32_t *inC = inB + n2 * CMPLX_DIM;
- float32_t *inD = inC + n2 * CMPLX_DIM;
- float32_t const *pW1 = p_rearranged_twiddle_tab_stride1;
- float32_t const *pW2 = p_rearranged_twiddle_tab_stride2;
- float32_t const *pW3 = p_rearranged_twiddle_tab_stride3;
- f32x4_t vecW;
- blkCnt = n2 / 2;
- /*
- * load 2 f32 complex pair
- */
- vecA = vldrwq_f32(inA);
- vecC = vldrwq_f32(inC);
- while (blkCnt > 0U)
- {
- vecB = vldrwq_f32(inB);
- vecD = vldrwq_f32(inD);
- vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
- vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
- vecSum1 = vecB + vecD;
- vecDiff1 = vecB - vecD;
- /*
- * [ 1 1 1 1 ] * [ A B C D ]' .* 1
- */
- vecTmp0 = vecSum0 + vecSum1;
- vst1q(inA, vecTmp0);
- inA += 4;
- /*
- * [ 1 -1 1 -1 ] * [ A B C D ]'
- */
- vecTmp0 = vecSum0 - vecSum1;
- /*
- * [ 1 -1 1 -1 ] * [ A B C D ]'.* W1
- */
- vecW = vld1q(pW2);
- pW2 += 4;
- vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
- vst1q(inB, vecTmp1);
- inB += 4;
- /*
- * [ 1 -i -1 +i ] * [ A B C D ]'
- */
- vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
- /*
- * [ 1 -i -1 +i ] * [ A B C D ]'.* W2
- */
- vecW = vld1q(pW1);
- pW1 += 4;
- vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
- vst1q(inC, vecTmp1);
- inC += 4;
- /*
- * [ 1 +i -1 -i ] * [ A B C D ]'
- */
- vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
- /*
- * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
- */
- vecW = vld1q(pW3);
- pW3 += 4;
- vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
- vst1q(inD, vecTmp1);
- inD += 4;
- vecA = vldrwq_f32(inA);
- vecC = vldrwq_f32(inC);
- blkCnt--;
- }
- pBase += CMPLX_DIM * n1;
- }
- n1 = n2;
- n2 >>= 2u;
- iter = iter << 2;
- stage++;
- }
- /*
- * start of Last stage process
- */
- uint32x4_t vecScGathAddr = vld1q_u32 ((uint32_t*)strides);
- vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
- /*
- * load scheduling
- */
- vecA = vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
- vecC = vldrwq_gather_base_f32(vecScGathAddr, 16);
- blkCnt = (fftLen >> 3);
- while (blkCnt > 0U)
- {
- vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
- vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
- vecB = vldrwq_gather_base_f32(vecScGathAddr, 8);
- vecD = vldrwq_gather_base_f32(vecScGathAddr, 24);
- vecSum1 = vecB + vecD;
- vecDiff1 = vecB - vecD;
- vecA = vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
- vecC = vldrwq_gather_base_f32(vecScGathAddr, 16);
- vecTmp0 = vecSum0 + vecSum1;
- vecTmp0 = vecTmp0 * onebyfftLen;
- vstrwq_scatter_base_f32(vecScGathAddr, -64, vecTmp0);
- vecTmp0 = vecSum0 - vecSum1;
- vecTmp0 = vecTmp0 * onebyfftLen;
- vstrwq_scatter_base_f32(vecScGathAddr, -64 + 8, vecTmp0);
- vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
- vecTmp0 = vecTmp0 * onebyfftLen;
- vstrwq_scatter_base_f32(vecScGathAddr, -64 + 16, vecTmp0);
- vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
- vecTmp0 = vecTmp0 * onebyfftLen;
- vstrwq_scatter_base_f32(vecScGathAddr, -64 + 24, vecTmp0);
- blkCnt--;
- }
- /*
- * End of last stage process
- */
- }
- static void arm_cfft_radix4by2_inverse_f32_mve(const arm_cfft_instance_f32 * S,float32_t *pSrc, uint32_t fftLen)
- {
- float32_t const *pCoefVec;
- float32_t const *pCoef = S->pTwiddle;
- float32_t *pIn0, *pIn1;
- uint32_t n2;
- float32_t onebyfftLen = arm_inverse_fft_length_f32(fftLen);
- uint32_t blkCnt;
- f32x4_t vecIn0, vecIn1, vecSum, vecDiff;
- f32x4_t vecCmplxTmp, vecTw;
- n2 = fftLen >> 1;
- pIn0 = pSrc;
- pIn1 = pSrc + fftLen;
- pCoefVec = pCoef;
- blkCnt = n2 / 2;
- while (blkCnt > 0U)
- {
- vecIn0 = *(f32x4_t *) pIn0;
- vecIn1 = *(f32x4_t *) pIn1;
- vecTw = vld1q(pCoefVec);
- pCoefVec += 4;
- vecSum = vecIn0 + vecIn1;
- vecDiff = vecIn0 - vecIn1;
- vecCmplxTmp = MVE_CMPLX_MULT_FLT_AxB(vecTw, vecDiff);
- vst1q(pIn0, vecSum);
- pIn0 += 4;
- vst1q(pIn1, vecCmplxTmp);
- pIn1 += 4;
- blkCnt--;
- }
- _arm_radix4_butterfly_inverse_f32_mve(S, pSrc, n2, onebyfftLen);
- _arm_radix4_butterfly_inverse_f32_mve(S, pSrc + fftLen, n2, onebyfftLen);
- }
- /**
- @addtogroup ComplexFFT
- @{
- */
- /**
- @brief Processing function for the floating-point complex FFT.
- @param[in] S points to an instance of the floating-point CFFT structure
- @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
- @param[in] ifftFlag flag that selects transform direction
- - value = 0: forward transform
- - value = 1: inverse transform
- @param[in] bitReverseFlag flag that enables / disables bit reversal of output
- - value = 0: disables bit reversal of output
- - value = 1: enables bit reversal of output
- @return none
- */
- void arm_cfft_f32(
- const arm_cfft_instance_f32 * S,
- float32_t * pSrc,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag)
- {
- uint32_t fftLen = S->fftLen;
- if (ifftFlag == 1U) {
- switch (fftLen) {
- case 16:
- case 64:
- case 256:
- case 1024:
- case 4096:
- _arm_radix4_butterfly_inverse_f32_mve(S, pSrc, fftLen, arm_inverse_fft_length_f32(S->fftLen));
- break;
- case 32:
- case 128:
- case 512:
- case 2048:
- arm_cfft_radix4by2_inverse_f32_mve(S, pSrc, fftLen);
- break;
- }
- } else {
- switch (fftLen) {
- case 16:
- case 64:
- case 256:
- case 1024:
- case 4096:
- _arm_radix4_butterfly_f32_mve(S, pSrc, fftLen);
- break;
- case 32:
- case 128:
- case 512:
- case 2048:
- arm_cfft_radix4by2_f32_mve(S, pSrc, fftLen);
- break;
- }
- }
- if (bitReverseFlag)
- {
- arm_bitreversal_32_inpl_mve((uint32_t*)pSrc, S->bitRevLength, S->pBitRevTable);
- }
- }
- #else
- extern void arm_radix8_butterfly_f32(
- float32_t * pSrc,
- uint16_t fftLen,
- const float32_t * pCoef,
- uint16_t twidCoefModifier);
- extern void arm_bitreversal_32(
- uint32_t * pSrc,
- const uint16_t bitRevLen,
- const uint16_t * pBitRevTable);
- /**
- @ingroup groupTransforms
- */
- /**
- @defgroup ComplexFFT Complex FFT Functions
- @par
- The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
- Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
- than the DFT, especially for long lengths.
- The algorithms described in this section
- operate on complex data. A separate set of functions is devoted to handling
- of real sequences.
- @par
- There are separate algorithms for handling floating-point, Q15, and Q31 data
- types. The algorithms available for each data type are described next.
- @par
- The FFT functions operate in-place. That is, the array holding the input data
- will also be used to hold the corresponding result. The input data is complex
- and contains <code>2*fftLen</code> interleaved values as shown below.
- <pre>{real[0], imag[0], real[1], imag[1], ...} </pre>
- The FFT result will be contained in the same array and the frequency domain
- values will have the same interleaving.
- @par Floating-point
- The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
- stages are performed along with a single radix-2 or radix-4 stage, as needed.
- The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
- a different twiddle factor table.
- @par
- The function uses the standard FFT definition and output values may grow by a
- factor of <code>fftLen</code> when computing the forward transform. The
- inverse transform includes a scale of <code>1/fftLen</code> as part of the
- calculation and this matches the textbook definition of the inverse FFT.
- @par
- For the MVE version, the new arm_cfft_init_f32 initialization function is
- <b>mandatory</b>. <b>Compilation flags are available to include only the required tables for the
- needed FFTs.</b> Other FFT versions can continue to be initialized as
- explained below.
- @par
- For not MVE versions, pre-initialized data structures containing twiddle factors
- and bit reversal tables are provided and defined in <code>arm_const_structs.h</code>. Include
- this header in your function and then pass one of the constant structures as
- an argument to arm_cfft_f32. For example:
- @par
- <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
- @par
- computes a 64-point inverse complex FFT including bit reversal.
- The data structures are treated as constant data and not modified during the
- calculation. The same data structure can be reused for multiple transforms
- including mixing forward and inverse transforms.
- @par
- Earlier releases of the library provided separate radix-2 and radix-4
- algorithms that operated on floating-point data. These functions are still
- provided but are deprecated. The older functions are slower and less general
- than the new functions.
- @par
- An example of initialization of the constants for the arm_cfft_f32 function follows:
- @code
- const static arm_cfft_instance_f32 *S;
- ...
- switch (length) {
- case 16:
- S = &arm_cfft_sR_f32_len16;
- break;
- case 32:
- S = &arm_cfft_sR_f32_len32;
- break;
- case 64:
- S = &arm_cfft_sR_f32_len64;
- break;
- case 128:
- S = &arm_cfft_sR_f32_len128;
- break;
- case 256:
- S = &arm_cfft_sR_f32_len256;
- break;
- case 512:
- S = &arm_cfft_sR_f32_len512;
- break;
- case 1024:
- S = &arm_cfft_sR_f32_len1024;
- break;
- case 2048:
- S = &arm_cfft_sR_f32_len2048;
- break;
- case 4096:
- S = &arm_cfft_sR_f32_len4096;
- break;
- }
- @endcode
- @par
- The new arm_cfft_init_f32 can also be used.
- @par Q15 and Q31
- The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
- stages are performed along with a single radix-2 stage, as needed.
- The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
- a different twiddle factor table.
- @par
- The function uses the standard FFT definition and output values may grow by a
- factor of <code>fftLen</code> when computing the forward transform. The
- inverse transform includes a scale of <code>1/fftLen</code> as part of the
- calculation and this matches the textbook definition of the inverse FFT.
- @par
- Pre-initialized data structures containing twiddle factors and bit reversal
- tables are provided and defined in <code>arm_const_structs.h</code>. Include
- this header in your function and then pass one of the constant structures as
- an argument to arm_cfft_q31. For example:
- @par
- <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
- @par
- computes a 64-point inverse complex FFT including bit reversal.
- The data structures are treated as constant data and not modified during the
- calculation. The same data structure can be reused for multiple transforms
- including mixing forward and inverse transforms.
- @par
- Earlier releases of the library provided separate radix-2 and radix-4
- algorithms that operated on floating-point data. These functions are still
- provided but are deprecated. The older functions are slower and less general
- than the new functions.
- @par
- An example of initialization of the constants for the arm_cfft_q31 function follows:
- @code
- const static arm_cfft_instance_q31 *S;
- ...
- switch (length) {
- case 16:
- S = &arm_cfft_sR_q31_len16;
- break;
- case 32:
- S = &arm_cfft_sR_q31_len32;
- break;
- case 64:
- S = &arm_cfft_sR_q31_len64;
- break;
- case 128:
- S = &arm_cfft_sR_q31_len128;
- break;
- case 256:
- S = &arm_cfft_sR_q31_len256;
- break;
- case 512:
- S = &arm_cfft_sR_q31_len512;
- break;
- case 1024:
- S = &arm_cfft_sR_q31_len1024;
- break;
- case 2048:
- S = &arm_cfft_sR_q31_len2048;
- break;
- case 4096:
- S = &arm_cfft_sR_q31_len4096;
- break;
- }
- @endcode
- */
- void arm_cfft_radix8by2_f32 (arm_cfft_instance_f32 * S, float32_t * p1)
- {
- uint32_t L = S->fftLen;
- float32_t * pCol1, * pCol2, * pMid1, * pMid2;
- float32_t * p2 = p1 + L;
- const float32_t * tw = (float32_t *) S->pTwiddle;
- float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
- float32_t m0, m1, m2, m3;
- uint32_t l;
- pCol1 = p1;
- pCol2 = p2;
- /* Define new length */
- L >>= 1;
- /* Initialize mid pointers */
- pMid1 = p1 + L;
- pMid2 = p2 + L;
- /* do two dot Fourier transform */
- for (l = L >> 2; l > 0; l-- )
- {
- t1[0] = p1[0];
- t1[1] = p1[1];
- t1[2] = p1[2];
- t1[3] = p1[3];
- t2[0] = p2[0];
- t2[1] = p2[1];
- t2[2] = p2[2];
- t2[3] = p2[3];
- t3[0] = pMid1[0];
- t3[1] = pMid1[1];
- t3[2] = pMid1[2];
- t3[3] = pMid1[3];
- t4[0] = pMid2[0];
- t4[1] = pMid2[1];
- t4[2] = pMid2[2];
- t4[3] = pMid2[3];
- *p1++ = t1[0] + t2[0];
- *p1++ = t1[1] + t2[1];
- *p1++ = t1[2] + t2[2];
- *p1++ = t1[3] + t2[3]; /* col 1 */
- t2[0] = t1[0] - t2[0];
- t2[1] = t1[1] - t2[1];
- t2[2] = t1[2] - t2[2];
- t2[3] = t1[3] - t2[3]; /* for col 2 */
- *pMid1++ = t3[0] + t4[0];
- *pMid1++ = t3[1] + t4[1];
- *pMid1++ = t3[2] + t4[2];
- *pMid1++ = t3[3] + t4[3]; /* col 1 */
- t4[0] = t4[0] - t3[0];
- t4[1] = t4[1] - t3[1];
- t4[2] = t4[2] - t3[2];
- t4[3] = t4[3] - t3[3]; /* for col 2 */
- twR = *tw++;
- twI = *tw++;
- /* multiply by twiddle factors */
- m0 = t2[0] * twR;
- m1 = t2[1] * twI;
- m2 = t2[1] * twR;
- m3 = t2[0] * twI;
- /* R = R * Tr - I * Ti */
- *p2++ = m0 + m1;
- /* I = I * Tr + R * Ti */
- *p2++ = m2 - m3;
- /* use vertical symmetry */
- /* 0.9988 - 0.0491i <==> -0.0491 - 0.9988i */
- m0 = t4[0] * twI;
- m1 = t4[1] * twR;
- m2 = t4[1] * twI;
- m3 = t4[0] * twR;
- *pMid2++ = m0 - m1;
- *pMid2++ = m2 + m3;
- twR = *tw++;
- twI = *tw++;
- m0 = t2[2] * twR;
- m1 = t2[3] * twI;
- m2 = t2[3] * twR;
- m3 = t2[2] * twI;
- *p2++ = m0 + m1;
- *p2++ = m2 - m3;
- m0 = t4[2] * twI;
- m1 = t4[3] * twR;
- m2 = t4[3] * twI;
- m3 = t4[2] * twR;
- *pMid2++ = m0 - m1;
- *pMid2++ = m2 + m3;
- }
- /* first col */
- arm_radix8_butterfly_f32 (pCol1, L, (float32_t *) S->pTwiddle, 2U);
- /* second col */
- arm_radix8_butterfly_f32 (pCol2, L, (float32_t *) S->pTwiddle, 2U);
- }
- void arm_cfft_radix8by4_f32 (arm_cfft_instance_f32 * S, float32_t * p1)
- {
- uint32_t L = S->fftLen >> 1;
- float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
- const float32_t *tw2, *tw3, *tw4;
- float32_t * p2 = p1 + L;
- float32_t * p3 = p2 + L;
- float32_t * p4 = p3 + L;
- float32_t t2[4], t3[4], t4[4], twR, twI;
- float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1;
- float32_t m0, m1, m2, m3;
- uint32_t l, twMod2, twMod3, twMod4;
- pCol1 = p1; /* points to real values by default */
- pCol2 = p2;
- pCol3 = p3;
- pCol4 = p4;
- pEnd1 = p2 - 1; /* points to imaginary values by default */
- pEnd2 = p3 - 1;
- pEnd3 = p4 - 1;
- pEnd4 = pEnd3 + L;
- tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle;
- L >>= 1;
- /* do four dot Fourier transform */
- twMod2 = 2;
- twMod3 = 4;
- twMod4 = 6;
- /* TOP */
- p1ap3_0 = p1[0] + p3[0];
- p1sp3_0 = p1[0] - p3[0];
- p1ap3_1 = p1[1] + p3[1];
- p1sp3_1 = p1[1] - p3[1];
- /* col 2 */
- t2[0] = p1sp3_0 + p2[1] - p4[1];
- t2[1] = p1sp3_1 - p2[0] + p4[0];
- /* col 3 */
- t3[0] = p1ap3_0 - p2[0] - p4[0];
- t3[1] = p1ap3_1 - p2[1] - p4[1];
- /* col 4 */
- t4[0] = p1sp3_0 - p2[1] + p4[1];
- t4[1] = p1sp3_1 + p2[0] - p4[0];
- /* col 1 */
- *p1++ = p1ap3_0 + p2[0] + p4[0];
- *p1++ = p1ap3_1 + p2[1] + p4[1];
- /* Twiddle factors are ones */
- *p2++ = t2[0];
- *p2++ = t2[1];
- *p3++ = t3[0];
- *p3++ = t3[1];
- *p4++ = t4[0];
- *p4++ = t4[1];
- tw2 += twMod2;
- tw3 += twMod3;
- tw4 += twMod4;
- for (l = (L - 2) >> 1; l > 0; l-- )
- {
- /* TOP */
- p1ap3_0 = p1[0] + p3[0];
- p1sp3_0 = p1[0] - p3[0];
- p1ap3_1 = p1[1] + p3[1];
- p1sp3_1 = p1[1] - p3[1];
- /* col 2 */
- t2[0] = p1sp3_0 + p2[1] - p4[1];
- t2[1] = p1sp3_1 - p2[0] + p4[0];
- /* col 3 */
- t3[0] = p1ap3_0 - p2[0] - p4[0];
- t3[1] = p1ap3_1 - p2[1] - p4[1];
- /* col 4 */
- t4[0] = p1sp3_0 - p2[1] + p4[1];
- t4[1] = p1sp3_1 + p2[0] - p4[0];
- /* col 1 - top */
- *p1++ = p1ap3_0 + p2[0] + p4[0];
- *p1++ = p1ap3_1 + p2[1] + p4[1];
- /* BOTTOM */
- p1ap3_1 = pEnd1[-1] + pEnd3[-1];
- p1sp3_1 = pEnd1[-1] - pEnd3[-1];
- p1ap3_0 = pEnd1[ 0] + pEnd3[0];
- p1sp3_0 = pEnd1[ 0] - pEnd3[0];
- /* col 2 */
- t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1;
- t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
- /* col 3 */
- t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
- t3[3] = p1ap3_0 - pEnd2[ 0] - pEnd4[ 0];
- /* col 4 */
- t4[2] = pEnd2[ 0] - pEnd4[ 0] - p1sp3_1;
- t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
- /* col 1 - Bottom */
- *pEnd1-- = p1ap3_0 + pEnd2[ 0] + pEnd4[ 0];
- *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
- /* COL 2 */
- /* read twiddle factors */
- twR = *tw2++;
- twI = *tw2++;
- /* multiply by twiddle factors */
- /* let Z1 = a + i(b), Z2 = c + i(d) */
- /* => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d) */
- /* Top */
- m0 = t2[0] * twR;
- m1 = t2[1] * twI;
- m2 = t2[1] * twR;
- m3 = t2[0] * twI;
- *p2++ = m0 + m1;
- *p2++ = m2 - m3;
- /* use vertical symmetry col 2 */
- /* 0.9997 - 0.0245i <==> 0.0245 - 0.9997i */
- /* Bottom */
- m0 = t2[3] * twI;
- m1 = t2[2] * twR;
- m2 = t2[2] * twI;
- m3 = t2[3] * twR;
- *pEnd2-- = m0 - m1;
- *pEnd2-- = m2 + m3;
- /* COL 3 */
- twR = tw3[0];
- twI = tw3[1];
- tw3 += twMod3;
- /* Top */
- m0 = t3[0] * twR;
- m1 = t3[1] * twI;
- m2 = t3[1] * twR;
- m3 = t3[0] * twI;
- *p3++ = m0 + m1;
- *p3++ = m2 - m3;
- /* use vertical symmetry col 3 */
- /* 0.9988 - 0.0491i <==> -0.9988 - 0.0491i */
- /* Bottom */
- m0 = -t3[3] * twR;
- m1 = t3[2] * twI;
- m2 = t3[2] * twR;
- m3 = t3[3] * twI;
- *pEnd3-- = m0 - m1;
- *pEnd3-- = m3 - m2;
- /* COL 4 */
- twR = tw4[0];
- twI = tw4[1];
- tw4 += twMod4;
- /* Top */
- m0 = t4[0] * twR;
- m1 = t4[1] * twI;
- m2 = t4[1] * twR;
- m3 = t4[0] * twI;
- *p4++ = m0 + m1;
- *p4++ = m2 - m3;
- /* use vertical symmetry col 4 */
- /* 0.9973 - 0.0736i <==> -0.0736 + 0.9973i */
- /* Bottom */
- m0 = t4[3] * twI;
- m1 = t4[2] * twR;
- m2 = t4[2] * twI;
- m3 = t4[3] * twR;
- *pEnd4-- = m0 - m1;
- *pEnd4-- = m2 + m3;
- }
- /* MIDDLE */
- /* Twiddle factors are */
- /* 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i */
- p1ap3_0 = p1[0] + p3[0];
- p1sp3_0 = p1[0] - p3[0];
- p1ap3_1 = p1[1] + p3[1];
- p1sp3_1 = p1[1] - p3[1];
- /* col 2 */
- t2[0] = p1sp3_0 + p2[1] - p4[1];
- t2[1] = p1sp3_1 - p2[0] + p4[0];
- /* col 3 */
- t3[0] = p1ap3_0 - p2[0] - p4[0];
- t3[1] = p1ap3_1 - p2[1] - p4[1];
- /* col 4 */
- t4[0] = p1sp3_0 - p2[1] + p4[1];
- t4[1] = p1sp3_1 + p2[0] - p4[0];
- /* col 1 - Top */
- *p1++ = p1ap3_0 + p2[0] + p4[0];
- *p1++ = p1ap3_1 + p2[1] + p4[1];
- /* COL 2 */
- twR = tw2[0];
- twI = tw2[1];
- m0 = t2[0] * twR;
- m1 = t2[1] * twI;
- m2 = t2[1] * twR;
- m3 = t2[0] * twI;
- *p2++ = m0 + m1;
- *p2++ = m2 - m3;
- /* COL 3 */
- twR = tw3[0];
- twI = tw3[1];
- m0 = t3[0] * twR;
- m1 = t3[1] * twI;
- m2 = t3[1] * twR;
- m3 = t3[0] * twI;
- *p3++ = m0 + m1;
- *p3++ = m2 - m3;
- /* COL 4 */
- twR = tw4[0];
- twI = tw4[1];
- m0 = t4[0] * twR;
- m1 = t4[1] * twI;
- m2 = t4[1] * twR;
- m3 = t4[0] * twI;
- *p4++ = m0 + m1;
- *p4++ = m2 - m3;
- /* first col */
- arm_radix8_butterfly_f32 (pCol1, L, (float32_t *) S->pTwiddle, 4U);
- /* second col */
- arm_radix8_butterfly_f32 (pCol2, L, (float32_t *) S->pTwiddle, 4U);
- /* third col */
- arm_radix8_butterfly_f32 (pCol3, L, (float32_t *) S->pTwiddle, 4U);
- /* fourth col */
- arm_radix8_butterfly_f32 (pCol4, L, (float32_t *) S->pTwiddle, 4U);
- }
- /**
- @addtogroup ComplexFFT
- @{
- */
- /**
- @brief Processing function for the floating-point complex FFT.
- @param[in] S points to an instance of the floating-point CFFT structure
- @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
- @param[in] ifftFlag flag that selects transform direction
- - value = 0: forward transform
- - value = 1: inverse transform
- @param[in] bitReverseFlag flag that enables / disables bit reversal of output
- - value = 0: disables bit reversal of output
- - value = 1: enables bit reversal of output
- @return none
- */
- void arm_cfft_f32(
- const arm_cfft_instance_f32 * S,
- float32_t * p1,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag)
- {
- uint32_t L = S->fftLen, l;
- float32_t invL, * pSrc;
- if (ifftFlag == 1U)
- {
- /* Conjugate input data */
- pSrc = p1 + 1;
- for (l = 0; l < L; l++)
- {
- *pSrc = -*pSrc;
- pSrc += 2;
- }
- }
- switch (L)
- {
- case 16:
- case 128:
- case 1024:
- arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1);
- break;
- case 32:
- case 256:
- case 2048:
- arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1);
- break;
- case 64:
- case 512:
- case 4096:
- arm_radix8_butterfly_f32 ( p1, L, (float32_t *) S->pTwiddle, 1);
- break;
- }
- if ( bitReverseFlag )
- arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable);
- if (ifftFlag == 1U)
- {
- invL = 1.0f / (float32_t)L;
- /* Conjugate and scale output data */
- pSrc = p1;
- for (l= 0; l < L; l++)
- {
- *pSrc++ *= invL ;
- *pSrc = -(*pSrc) * invL;
- pSrc++;
- }
- }
- }
- #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
- /**
- @} end of ComplexFFT group
- */
|