arm_rfft_q15.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526
  1. /* ----------------------------------------------------------------------
  2. * Project: CMSIS DSP Library
  3. * Title: arm_rfft_q15.c
  4. * Description: RFFT & RIFFT Q15 process function
  5. *
  6. * $Date: 23 April 2021
  7. * $Revision: V1.9.0
  8. *
  9. * Target Processor: Cortex-M and Cortex-A cores
  10. * -------------------------------------------------------------------- */
  11. /*
  12. * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
  13. *
  14. * SPDX-License-Identifier: Apache-2.0
  15. *
  16. * Licensed under the Apache License, Version 2.0 (the License); you may
  17. * not use this file except in compliance with the License.
  18. * You may obtain a copy of the License at
  19. *
  20. * www.apache.org/licenses/LICENSE-2.0
  21. *
  22. * Unless required by applicable law or agreed to in writing, software
  23. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  24. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  25. * See the License for the specific language governing permissions and
  26. * limitations under the License.
  27. */
  28. #include "dsp/transform_functions.h"
  29. /* ----------------------------------------------------------------------
  30. * Internal functions prototypes
  31. * -------------------------------------------------------------------- */
  32. void arm_split_rfft_q15(
  33. q15_t * pSrc,
  34. uint32_t fftLen,
  35. const q15_t * pATable,
  36. const q15_t * pBTable,
  37. q15_t * pDst,
  38. uint32_t modifier);
  39. void arm_split_rifft_q15(
  40. q15_t * pSrc,
  41. uint32_t fftLen,
  42. const q15_t * pATable,
  43. const q15_t * pBTable,
  44. q15_t * pDst,
  45. uint32_t modifier);
  46. /**
  47. @addtogroup RealFFT
  48. @{
  49. */
  50. /**
  51. @brief Processing function for the Q15 RFFT/RIFFT.
  52. @param[in] S points to an instance of the Q15 RFFT/RIFFT structure
  53. @param[in] pSrc points to input buffer (Source buffer is modified by this function.)
  54. @param[out] pDst points to output buffer
  55. @return none
  56. @par Input an output formats
  57. Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
  58. Hence the output format is different for different RFFT sizes.
  59. The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
  60. @par
  61. \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
  62. @par
  63. \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
  64. @par
  65. If the input buffer is of length N, the output buffer must have length 2*N.
  66. The input buffer is modified by this function.
  67. @par
  68. For the RIFFT, the source buffer must at least have length
  69. fftLenReal + 2.
  70. The last two elements must be equal to what would be generated
  71. by the RFFT:
  72. (pSrc[0] - pSrc[1]) >> 1 and 0
  73. */
  74. void arm_rfft_q15(
  75. const arm_rfft_instance_q15 * S,
  76. q15_t * pSrc,
  77. q15_t * pDst)
  78. {
  79. #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
  80. const arm_cfft_instance_q15 *S_CFFT = &(S->cfftInst);
  81. #else
  82. const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
  83. #endif
  84. uint32_t L2 = S->fftLenReal >> 1U;
  85. /* Calculation of RIFFT of input */
  86. if (S->ifftFlagR == 1U)
  87. {
  88. /* Real IFFT core process */
  89. arm_split_rifft_q15 (pSrc, L2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier);
  90. /* Complex IFFT process */
  91. arm_cfft_q15 (S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
  92. arm_shift_q15(pDst, 1, pDst, S->fftLenReal);
  93. }
  94. else
  95. {
  96. /* Calculation of RFFT of input */
  97. /* Complex FFT process */
  98. arm_cfft_q15 (S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
  99. /* Real FFT core process */
  100. arm_split_rfft_q15 (pSrc, L2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier);
  101. }
  102. }
  103. /**
  104. @} end of RealFFT group
  105. */
  106. /**
  107. @brief Core Real FFT process
  108. @param[in] pSrc points to input buffer
  109. @param[in] fftLen length of FFT
  110. @param[in] pATable points to twiddle Coef A buffer
  111. @param[in] pBTable points to twiddle Coef B buffer
  112. @param[out] pDst points to output buffer
  113. @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table
  114. @return none
  115. @par
  116. The function implements a Real FFT
  117. */
  118. #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
  119. #include "arm_helium_utils.h"
  120. #include "arm_vec_fft.h"
  121. #if defined(__CMSIS_GCC_H)
  122. #define MVE_CMPLX_MULT_FX_AxB_S16(A,B) vqdmladhxq_s16(vqdmlsdhq_s16((__typeof(A))vuninitializedq_s16(), A, B), A, B)
  123. #define MVE_CMPLX_MULT_FX_AxConjB_S16(A,B) vqdmladhq_s16(vqdmlsdhxq_s16((__typeof(A))vuninitializedq_s16(), A, B), A, B)
  124. #endif
  125. void arm_split_rfft_q15(
  126. q15_t * pSrc,
  127. uint32_t fftLen,
  128. const q15_t * pATable,
  129. const q15_t * pBTable,
  130. q15_t * pDst,
  131. uint32_t modifier)
  132. {
  133. uint32_t i; /* Loop Counter */
  134. const q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
  135. q15_t *pOut1 = &pDst[2];
  136. q15_t *pIn1 = &pSrc[2];
  137. uint16x8_t offsetIn = { 6, 7, 4, 5, 2, 3, 0, 1 };
  138. uint16x8_t offsetCoef;
  139. const uint16_t offsetCoefArr[16] = {
  140. 0, 0, 2, 2, 4, 4, 6, 6,
  141. 0, 1, 0, 1, 0, 1, 0, 1
  142. };
  143. offsetCoef = vmulq_n_u16(vld1q_u16(offsetCoefArr), modifier) + vld1q_u16(offsetCoefArr + 8);
  144. offsetIn = vaddq_n_u16(offsetIn, (2 * fftLen - 8));
  145. /* Init coefficient pointers */
  146. pCoefA = &pATable[modifier * 2];
  147. pCoefB = &pBTable[modifier * 2];
  148. const q15_t *pCoefAb, *pCoefBb;
  149. pCoefAb = pCoefA;
  150. pCoefBb = pCoefB;
  151. pIn1 = &pSrc[2];
  152. i = fftLen - 1U;
  153. i = i / 4 + 1;
  154. while (i > 0U) {
  155. q15x8_t in1 = vld1q_s16(pIn1);
  156. q15x8_t in2 = vldrhq_gather_shifted_offset_s16(pSrc, offsetIn);
  157. q15x8_t coefA = vldrhq_gather_shifted_offset_s16(pCoefAb, offsetCoef);
  158. q15x8_t coefB = vldrhq_gather_shifted_offset_s16(pCoefBb, offsetCoef);
  159. #if defined(__CMSIS_GCC_H)
  160. q15x8_t out = vhaddq_s16(MVE_CMPLX_MULT_FX_AxB_S16(in1, coefA),
  161. MVE_CMPLX_MULT_FX_AxConjB_S16(coefB, in2));
  162. #else
  163. q15x8_t out = vhaddq_s16(MVE_CMPLX_MULT_FX_AxB(in1, coefA, q15x8_t),
  164. MVE_CMPLX_MULT_FX_AxConjB(coefB, in2, q15x8_t));
  165. #endif
  166. vst1q_s16(pOut1, out);
  167. pOut1 += 8;
  168. offsetCoef = vaddq_n_u16(offsetCoef, modifier * 8);
  169. offsetIn -= 8;
  170. pIn1 += 8;
  171. i -= 1;
  172. }
  173. pDst[2 * fftLen] = (pSrc[0] - pSrc[1]) >> 1U;
  174. pDst[2 * fftLen + 1] = 0;
  175. pDst[0] = (pSrc[0] + pSrc[1]) >> 1U;
  176. pDst[1] = 0;
  177. }
  178. #else
  179. void arm_split_rfft_q15(
  180. q15_t * pSrc,
  181. uint32_t fftLen,
  182. const q15_t * pATable,
  183. const q15_t * pBTable,
  184. q15_t * pDst,
  185. uint32_t modifier)
  186. {
  187. uint32_t i; /* Loop Counter */
  188. q31_t outR, outI; /* Temporary variables for output */
  189. const q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
  190. q15_t *pSrc1, *pSrc2;
  191. #if defined (ARM_MATH_DSP)
  192. q15_t *pD1, *pD2;
  193. #endif
  194. /* Init coefficient pointers */
  195. pCoefA = &pATable[modifier * 2];
  196. pCoefB = &pBTable[modifier * 2];
  197. pSrc1 = &pSrc[2];
  198. pSrc2 = &pSrc[(2U * fftLen) - 2U];
  199. #if defined (ARM_MATH_DSP)
  200. i = 1U;
  201. pD1 = pDst + 2;
  202. pD2 = pDst + (4U * fftLen) - 2;
  203. for (i = fftLen - 1; i > 0; i--)
  204. {
  205. /*
  206. outR = ( pSrc[2 * i] * pATable[2 * i]
  207. - pSrc[2 * i + 1] * pATable[2 * i + 1]
  208. + pSrc[2 * n - 2 * i] * pBTable[2 * i]
  209. + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
  210. outI = ( pIn[2 * i + 1] * pATable[2 * i]
  211. + pIn[2 * i] * pATable[2 * i + 1]
  212. + pIn[2 * n - 2 * i] * pBTable[2 * i + 1]
  213. - pIn[2 * n - 2 * i + 1] * pBTable[2 * i])
  214. */
  215. #ifndef ARM_MATH_BIG_ENDIAN
  216. /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
  217. outR = __SMUSD(read_q15x2 (pSrc1), read_q15x2((q15_t *) pCoefA));
  218. #else
  219. /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
  220. outR = -(__SMUSD(read_q15x2 (pSrc1), read_q15x2((q15_t *) pCoefA)));
  221. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  222. /* pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
  223. outR = __SMLAD(read_q15x2 (pSrc2), read_q15x2((q15_t *) pCoefB), outR) >> 16U;
  224. /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
  225. #ifndef ARM_MATH_BIG_ENDIAN
  226. outI = __SMUSDX(read_q15x2_da (&pSrc2), read_q15x2((q15_t *) pCoefB));
  227. #else
  228. outI = __SMUSDX(read_q15x2 ((q15_t *) pCoefB), read_q15x2_da (&pSrc2));
  229. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  230. /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
  231. outI = __SMLADX(read_q15x2_ia (&pSrc1), read_q15x2 ((q15_t *) pCoefA), outI);
  232. /* write output */
  233. *pD1++ = (q15_t) outR;
  234. *pD1++ = outI >> 16U;
  235. /* write complex conjugate output */
  236. pD2[0] = (q15_t) outR;
  237. pD2[1] = -(outI >> 16U);
  238. pD2 -= 2;
  239. /* update coefficient pointer */
  240. pCoefB = pCoefB + (2U * modifier);
  241. pCoefA = pCoefA + (2U * modifier);
  242. }
  243. pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1U;
  244. pDst[2U * fftLen + 1U] = 0;
  245. pDst[0] = (pSrc[0] + pSrc[1]) >> 1U;
  246. pDst[1] = 0;
  247. #else
  248. i = 1U;
  249. while (i < fftLen)
  250. {
  251. /*
  252. outR = ( pSrc[2 * i] * pATable[2 * i]
  253. - pSrc[2 * i + 1] * pATable[2 * i + 1]
  254. + pSrc[2 * n - 2 * i] * pBTable[2 * i]
  255. + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
  256. */
  257. outR = *pSrc1 * *pCoefA;
  258. outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
  259. outR = outR + (*pSrc2 * *pCoefB);
  260. outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16;
  261. /*
  262. outI = ( pIn[2 * i + 1] * pATable[2 * i]
  263. + pIn[2 * i] * pATable[2 * i + 1]
  264. + pIn[2 * n - 2 * i] * pBTable[2 * i + 1]
  265. - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
  266. */
  267. outI = *pSrc2 * *(pCoefB + 1);
  268. outI = outI - (*(pSrc2 + 1) * *pCoefB);
  269. outI = outI + (*(pSrc1 + 1) * *pCoefA);
  270. outI = outI + (*pSrc1 * *(pCoefA + 1));
  271. /* update input pointers */
  272. pSrc1 += 2U;
  273. pSrc2 -= 2U;
  274. /* write output */
  275. pDst[2U * i] = (q15_t) outR;
  276. pDst[2U * i + 1U] = outI >> 16U;
  277. /* write complex conjugate output */
  278. pDst[(4U * fftLen) - (2U * i)] = (q15_t) outR;
  279. pDst[((4U * fftLen) - (2U * i)) + 1U] = -(outI >> 16U);
  280. /* update coefficient pointer */
  281. pCoefB = pCoefB + (2U * modifier);
  282. pCoefA = pCoefA + (2U * modifier);
  283. i++;
  284. }
  285. pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
  286. pDst[2U * fftLen + 1U] = 0;
  287. pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
  288. pDst[1] = 0;
  289. #endif /* #if defined (ARM_MATH_DSP) */
  290. }
  291. #endif /* defined(ARM_MATH_MVEI) */
  292. /**
  293. @brief Core Real IFFT process
  294. @param[in] pSrc points to input buffer
  295. @param[in] fftLen length of FFT
  296. @param[in] pATable points to twiddle Coef A buffer
  297. @param[in] pBTable points to twiddle Coef B buffer
  298. @param[out] pDst points to output buffer
  299. @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table
  300. @return none
  301. @par
  302. The function implements a Real IFFT
  303. */
  304. #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
  305. #include "arm_helium_utils.h"
  306. #include "arm_vec_fft.h"
  307. void arm_split_rifft_q15(
  308. q15_t * pSrc,
  309. uint32_t fftLen,
  310. const q15_t * pATable,
  311. const q15_t * pBTable,
  312. q15_t * pDst,
  313. uint32_t modifier)
  314. {
  315. uint32_t i; /* Loop Counter */
  316. const q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
  317. q15_t *pIn1;
  318. uint16x8_t offset = { 6, 7, 4, 5, 2, 3, 0, 1 };
  319. uint16x8_t offsetCoef;
  320. int16x8_t conj = { 1, -1, 1, -1, 1, -1, 1, -1 }; /* conjugate */
  321. const uint16_t offsetCoefArr[16] = {
  322. 0, 0, 2, 2, 4, 4, 6, 6,
  323. 0, 1, 0, 1, 0, 1, 0, 1
  324. };
  325. offsetCoef = vmulq_n_u16(vld1q_u16(offsetCoefArr), modifier) + vld1q_u16(offsetCoefArr + 8);
  326. offset = vaddq_n_u16(offset, (2 * fftLen - 6));
  327. /* Init coefficient pointers */
  328. pCoefA = &pATable[0];
  329. pCoefB = &pBTable[0];
  330. const q15_t *pCoefAb, *pCoefBb;
  331. pCoefAb = pCoefA;
  332. pCoefBb = pCoefB;
  333. pIn1 = &pSrc[0];
  334. i = fftLen;
  335. i = i / 4;
  336. while (i > 0U) {
  337. q15x8_t in1 = vld1q_s16(pIn1);
  338. q15x8_t in2 = vldrhq_gather_shifted_offset_s16(pSrc, offset);
  339. q15x8_t coefA = vldrhq_gather_shifted_offset_s16(pCoefAb, offsetCoef);
  340. q15x8_t coefB = vldrhq_gather_shifted_offset_s16(pCoefBb, offsetCoef);
  341. /* can we avoid the conjugate here ? */
  342. q15x8_t out = vhaddq_s16(MVE_CMPLX_MULT_FX_AxConjB(in1, coefA, q15x8_t),
  343. vmulq(conj, MVE_CMPLX_MULT_FX_AxB(in2, coefB, q15x8_t)));
  344. vst1q_s16(pDst, out);
  345. pDst += 8;
  346. offsetCoef = vaddq_n_u16(offsetCoef, modifier * 8);
  347. offset -= 8;
  348. pIn1 += 8;
  349. i -= 1;
  350. }
  351. }
  352. #else
  353. void arm_split_rifft_q15(
  354. q15_t * pSrc,
  355. uint32_t fftLen,
  356. const q15_t * pATable,
  357. const q15_t * pBTable,
  358. q15_t * pDst,
  359. uint32_t modifier)
  360. {
  361. uint32_t i; /* Loop Counter */
  362. q31_t outR, outI; /* Temporary variables for output */
  363. const q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
  364. q15_t *pSrc1, *pSrc2;
  365. q15_t *pDst1 = &pDst[0];
  366. pCoefA = &pATable[0];
  367. pCoefB = &pBTable[0];
  368. pSrc1 = &pSrc[0];
  369. pSrc2 = &pSrc[2 * fftLen];
  370. i = fftLen;
  371. while (i > 0U)
  372. {
  373. /*
  374. outR = ( pIn[2 * i] * pATable[2 * i]
  375. + pIn[2 * i + 1] * pATable[2 * i + 1]
  376. + pIn[2 * n - 2 * i] * pBTable[2 * i]
  377. - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
  378. outI = ( pIn[2 * i + 1] * pATable[2 * i]
  379. - pIn[2 * i] * pATable[2 * i + 1]
  380. - pIn[2 * n - 2 * i] * pBTable[2 * i + 1]
  381. - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
  382. */
  383. #if defined (ARM_MATH_DSP)
  384. #ifndef ARM_MATH_BIG_ENDIAN
  385. /* pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
  386. outR = __SMUSD(read_q15x2(pSrc2), read_q15x2((q15_t *) pCoefB));
  387. #else
  388. /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] + pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
  389. outR = -(__SMUSD(read_q15x2(pSrc2), read_q15x2((q15_t *) pCoefB)));
  390. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  391. /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] */
  392. outR = __SMLAD(read_q15x2(pSrc1), read_q15x2 ((q15_t *) pCoefA), outR) >> 16U;
  393. /* -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] + pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
  394. outI = __SMUADX(read_q15x2_da (&pSrc2), read_q15x2((q15_t *) pCoefB));
  395. /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
  396. #ifndef ARM_MATH_BIG_ENDIAN
  397. outI = __SMLSDX(read_q15x2 ((q15_t *) pCoefA), read_q15x2_ia (&pSrc1), -outI);
  398. #else
  399. outI = __SMLSDX(read_q15x2_ia (&pSrc1), read_q15x2 ((q15_t *) pCoefA), -outI);
  400. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  401. /* write output */
  402. #ifndef ARM_MATH_BIG_ENDIAN
  403. write_q15x2_ia (&pDst1, __PKHBT(outR, (outI >> 16U), 16));
  404. #else
  405. write_q15x2_ia (&pDst1, __PKHBT((outI >> 16U), outR, 16));
  406. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  407. #else /* #if defined (ARM_MATH_DSP) */
  408. outR = *pSrc2 * *pCoefB;
  409. outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
  410. outR = outR + (*pSrc1 * *pCoefA);
  411. outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;
  412. outI = *(pSrc1 + 1) * *pCoefA;
  413. outI = outI - (*pSrc1 * *(pCoefA + 1));
  414. outI = outI - (*pSrc2 * *(pCoefB + 1));
  415. outI = outI - (*(pSrc2 + 1) * *(pCoefB));
  416. /* update input pointers */
  417. pSrc1 += 2U;
  418. pSrc2 -= 2U;
  419. /* write output */
  420. *pDst1++ = (q15_t) outR;
  421. *pDst1++ = (q15_t) (outI >> 16);
  422. #endif /* #if defined (ARM_MATH_DSP) */
  423. /* update coefficient pointer */
  424. pCoefB = pCoefB + (2 * modifier);
  425. pCoefA = pCoefA + (2 * modifier);
  426. i--;
  427. }
  428. }
  429. #endif /* defined(ARM_MATH_MVEI) */