| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- import os.path
- import itertools
- import Tools
- import random
- import numpy as np
- import scipy.spatial
- NBTESTSAMPLES = 10
- VECDIM = [35,14,20]
- def euclidean(xa,xb):
- r = scipy.spatial.distance.euclidean(xa,xb)
- return(r)
- def braycurtis(xa,xb):
- r = scipy.spatial.distance.braycurtis(xa,xb)
- return(r)
- def canberra(xa,xb):
- r = scipy.spatial.distance.canberra(xa,xb)
- return(r)
- def chebyshev(xa,xb):
- r = scipy.spatial.distance.chebyshev(xa,xb)
- return(r)
- def cityblock(xa,xb):
- r = scipy.spatial.distance.cityblock(xa,xb)
- return(r)
- def correlation(xa,xb):
- r = scipy.spatial.distance.correlation (xa,xb)
- return(r)
- def cosine(xa,xb):
- r = scipy.spatial.distance.cosine (xa,xb)
- return(r)
- def jensenshannon(xa,xb):
- r = scipy.spatial.distance.jensenshannon (xa,xb)
- return(r)
- def minkowski (xa,xb,dim):
- r = scipy.spatial.distance.minkowski(xa,xb,p=dim)
- return(r)
- def dice(xa,xb):
- r = scipy.spatial.distance.dice (xa,xb)
- return(r)
- def hamming(xa,xb):
- r = scipy.spatial.distance.hamming (xa,xb)
- return(r)
- def jaccard(xa,xb):
- r = scipy.spatial.distance.jaccard (xa,xb)
- return(r)
- def kulsinski(xa,xb):
- r = scipy.spatial.distance.kulsinski (xa,xb)
- return(r)
- def rogerstanimoto(xa,xb):
- r = scipy.spatial.distance.rogerstanimoto (xa,xb)
- return(r)
- def russellrao(xa,xb):
- r = scipy.spatial.distance.russellrao (xa,xb)
- return(r)
- def sokalmichener(xa,xb):
- r = scipy.spatial.distance.sokalmichener (xa,xb)
- return(r)
- def sokalsneath(xa,xb):
- r = scipy.spatial.distance.sokalsneath (xa,xb)
- return(r)
- def yule(xa,xb):
- r = scipy.spatial.distance.yule (xa,xb)
- return(r)
- def writeFTest(config,funcList):
- dims=[]
- dimsM=[]
- inputsA=[]
- inputsB=[]
- inputsAJ=[]
- inputsBJ=[]
- outputs=[]
- outputMin=[]
- outputJen=[]
- for i in range(0,len(funcList)):
- outputs.append([])
- vecDim = VECDIM[0]
- dims.append(NBTESTSAMPLES)
- dims.append(vecDim)
- dimsM.append(NBTESTSAMPLES)
- dimsM.append(vecDim)
- for _ in range(0,NBTESTSAMPLES):
- normDim = np.random.choice([2,3,4])
- dimsM.append(normDim)
- va = np.random.randn(vecDim)
- # Normalization for distance assuming probability distribution in entry
- vb = np.random.randn(vecDim)
- for i in range(0,len(funcList)):
- func = funcList[i]
- outputs[i].append(func(va,vb))
- outputMin.append(minkowski(va,vb,normDim))
- inputsA += list(va)
- inputsB += list(vb)
- va = np.abs(va)
- va = va / np.sum(va)
- vb = np.abs(vb)
- vb = vb / np.sum(vb)
- inputsAJ += list(va)
- inputsBJ += list(vb)
- outputJen.append(jensenshannon(va,vb))
- inputsA=np.array(inputsA)
- inputsB=np.array(inputsB)
- for i in range(0,len(funcList)):
- outputs[i]=np.array(outputs[i])
-
- config.writeInput(1, inputsA,"InputA")
- config.writeInput(1, inputsB,"InputB")
- config.writeInput(8, inputsAJ,"InputA")
- config.writeInput(8, inputsBJ,"InputB")
- config.writeInputS16(1, dims,"Dims")
- config.writeInputS16(9, dimsM,"Dims")
- for i in range(0,len(funcList)):
- config.writeReference(i+1, outputs[i],"Ref")
- config.writeReference(8, outputJen,"Ref")
- config.writeReference(9, outputMin,"Ref")
- def writeBTest(config,funcList):
- dims=[]
- inputsA=[]
- inputsB=[]
- outputs=[]
- for i in range(0,len(funcList)):
- outputs.append([])
- vecDim = VECDIM[0]
- dims.append(NBTESTSAMPLES)
- dims.append(vecDim)
- va = np.random.choice([0,1],vecDim)
- # Number of word32 containing all of our bits
- pva = Tools.packset(va)
- dims.append(len(pva))
- for _ in range(0,NBTESTSAMPLES):
- va = np.random.choice([0,1],vecDim)
- vb = np.random.choice([0,1],vecDim)
- # Boolean arrays are packed for the C code
- pva = Tools.packset(va)
- pvb = Tools.packset(vb)
- for i in range(0,len(funcList)):
- func = funcList[i]
- outputs[i].append(func(va,vb))
- inputsA += pva
- inputsB += pvb
- inputsA=np.array(inputsA)
- inputsB=np.array(inputsB)
- for i in range(0,len(funcList)):
- outputs[i]=np.array(outputs[i])
-
- config.writeInput(1, inputsA,"InputA")
- config.writeInput(1, inputsB,"InputB")
- config.writeInputS16(1, dims,"Dims")
- for i in range(0,len(funcList)):
- config.writeReferenceF32(i+1, outputs[i],"Ref")
- def writeFTests(config):
- writeFTest(config,[braycurtis,canberra,chebyshev,cityblock,correlation,cosine,euclidean])
- def writeBTests(config):
- writeBTest(config,[dice,hamming,jaccard,kulsinski,rogerstanimoto,russellrao,sokalmichener,sokalsneath,yule])
- def writeFBenchmark(config):
- NBSAMPLES=256
- va = np.random.randn(NBSAMPLES)
- vb = np.random.randn(NBSAMPLES)
- inputsA = list(va)
- inputsB = list(vb)
- va = np.abs(va)
- va = list(va / np.sum(va))
- vb = np.abs(vb)
- vb = list(vb / np.sum(vb))
- config.writeInput(1, inputsA,"InputBenchA")
- config.writeInput(1, inputsB,"InputBenchB")
- config.writeInput(1, va,"InputBenchProbaA")
- config.writeInput(1, vb,"InputBenchProbaB")
- def writeUBenchmark(config):
- NBSAMPLES=256*32
- va = np.random.choice([0,1],NBSAMPLES)
- vb = np.random.choice([0,1],NBSAMPLES)
- pva = list(Tools.packset(va))
- pvb = list(Tools.packset(vb))
- config.writeInput(1, pva,"InputBenchA")
- config.writeInput(1, pvb,"InputBenchB")
- def generatePatterns():
- PATTERNDIR = os.path.join("Patterns","DSP","Distance","Distance")
- PARAMDIR = os.path.join("Parameters","DSP","Distance","Distance")
-
- configf64=Tools.Config(PATTERNDIR,PARAMDIR,"f64")
- configf32=Tools.Config(PATTERNDIR,PARAMDIR,"f32")
- configf16=Tools.Config(PATTERNDIR,PARAMDIR,"f16")
- configu32=Tools.Config(PATTERNDIR,PARAMDIR,"u32")
-
- configf32.setOverwrite(False)
- configf16.setOverwrite(False)
- configu32.setOverwrite(False)
- writeFTests(configf64)
- writeFTests(configf32)
- writeFTests(configf16)
- writeBTests(configu32)
- writeFBenchmark(configf32)
- writeFBenchmark(configf16)
- writeUBenchmark(configu32)
- if __name__ == '__main__':
- generatePatterns()
|