Distance.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252
  1. import os.path
  2. import itertools
  3. import Tools
  4. import random
  5. import numpy as np
  6. import scipy.spatial
  7. NBTESTSAMPLES = 10
  8. VECDIM = [35,14,20]
  9. def euclidean(xa,xb):
  10. r = scipy.spatial.distance.euclidean(xa,xb)
  11. return(r)
  12. def braycurtis(xa,xb):
  13. r = scipy.spatial.distance.braycurtis(xa,xb)
  14. return(r)
  15. def canberra(xa,xb):
  16. r = scipy.spatial.distance.canberra(xa,xb)
  17. return(r)
  18. def chebyshev(xa,xb):
  19. r = scipy.spatial.distance.chebyshev(xa,xb)
  20. return(r)
  21. def cityblock(xa,xb):
  22. r = scipy.spatial.distance.cityblock(xa,xb)
  23. return(r)
  24. def correlation(xa,xb):
  25. r = scipy.spatial.distance.correlation (xa,xb)
  26. return(r)
  27. def cosine(xa,xb):
  28. r = scipy.spatial.distance.cosine (xa,xb)
  29. return(r)
  30. def jensenshannon(xa,xb):
  31. r = scipy.spatial.distance.jensenshannon (xa,xb)
  32. return(r)
  33. def minkowski (xa,xb,dim):
  34. r = scipy.spatial.distance.minkowski(xa,xb,p=dim)
  35. return(r)
  36. def dice(xa,xb):
  37. r = scipy.spatial.distance.dice (xa,xb)
  38. return(r)
  39. def hamming(xa,xb):
  40. r = scipy.spatial.distance.hamming (xa,xb)
  41. return(r)
  42. def jaccard(xa,xb):
  43. r = scipy.spatial.distance.jaccard (xa,xb)
  44. return(r)
  45. def kulsinski(xa,xb):
  46. r = scipy.spatial.distance.kulsinski (xa,xb)
  47. return(r)
  48. def rogerstanimoto(xa,xb):
  49. r = scipy.spatial.distance.rogerstanimoto (xa,xb)
  50. return(r)
  51. def russellrao(xa,xb):
  52. r = scipy.spatial.distance.russellrao (xa,xb)
  53. return(r)
  54. def sokalmichener(xa,xb):
  55. r = scipy.spatial.distance.sokalmichener (xa,xb)
  56. return(r)
  57. def sokalsneath(xa,xb):
  58. r = scipy.spatial.distance.sokalsneath (xa,xb)
  59. return(r)
  60. def yule(xa,xb):
  61. r = scipy.spatial.distance.yule (xa,xb)
  62. return(r)
  63. def writeFTest(config,funcList):
  64. dims=[]
  65. dimsM=[]
  66. inputsA=[]
  67. inputsB=[]
  68. inputsAJ=[]
  69. inputsBJ=[]
  70. outputs=[]
  71. outputMin=[]
  72. outputJen=[]
  73. for i in range(0,len(funcList)):
  74. outputs.append([])
  75. vecDim = VECDIM[0]
  76. dims.append(NBTESTSAMPLES)
  77. dims.append(vecDim)
  78. dimsM.append(NBTESTSAMPLES)
  79. dimsM.append(vecDim)
  80. for _ in range(0,NBTESTSAMPLES):
  81. normDim = np.random.choice([2,3,4])
  82. dimsM.append(normDim)
  83. va = np.random.randn(vecDim)
  84. # Normalization for distance assuming probability distribution in entry
  85. vb = np.random.randn(vecDim)
  86. for i in range(0,len(funcList)):
  87. func = funcList[i]
  88. outputs[i].append(func(va,vb))
  89. outputMin.append(minkowski(va,vb,normDim))
  90. inputsA += list(va)
  91. inputsB += list(vb)
  92. va = np.abs(va)
  93. va = va / np.sum(va)
  94. vb = np.abs(vb)
  95. vb = vb / np.sum(vb)
  96. inputsAJ += list(va)
  97. inputsBJ += list(vb)
  98. outputJen.append(jensenshannon(va,vb))
  99. inputsA=np.array(inputsA)
  100. inputsB=np.array(inputsB)
  101. for i in range(0,len(funcList)):
  102. outputs[i]=np.array(outputs[i])
  103. config.writeInput(1, inputsA,"InputA")
  104. config.writeInput(1, inputsB,"InputB")
  105. config.writeInput(8, inputsAJ,"InputA")
  106. config.writeInput(8, inputsBJ,"InputB")
  107. config.writeInputS16(1, dims,"Dims")
  108. config.writeInputS16(9, dimsM,"Dims")
  109. for i in range(0,len(funcList)):
  110. config.writeReference(i+1, outputs[i],"Ref")
  111. config.writeReference(8, outputJen,"Ref")
  112. config.writeReference(9, outputMin,"Ref")
  113. def writeBTest(config,funcList):
  114. dims=[]
  115. inputsA=[]
  116. inputsB=[]
  117. outputs=[]
  118. for i in range(0,len(funcList)):
  119. outputs.append([])
  120. vecDim = VECDIM[0]
  121. dims.append(NBTESTSAMPLES)
  122. dims.append(vecDim)
  123. va = np.random.choice([0,1],vecDim)
  124. # Number of word32 containing all of our bits
  125. pva = Tools.packset(va)
  126. dims.append(len(pva))
  127. for _ in range(0,NBTESTSAMPLES):
  128. va = np.random.choice([0,1],vecDim)
  129. vb = np.random.choice([0,1],vecDim)
  130. # Boolean arrays are packed for the C code
  131. pva = Tools.packset(va)
  132. pvb = Tools.packset(vb)
  133. for i in range(0,len(funcList)):
  134. func = funcList[i]
  135. outputs[i].append(func(va,vb))
  136. inputsA += pva
  137. inputsB += pvb
  138. inputsA=np.array(inputsA)
  139. inputsB=np.array(inputsB)
  140. for i in range(0,len(funcList)):
  141. outputs[i]=np.array(outputs[i])
  142. config.writeInput(1, inputsA,"InputA")
  143. config.writeInput(1, inputsB,"InputB")
  144. config.writeInputS16(1, dims,"Dims")
  145. for i in range(0,len(funcList)):
  146. config.writeReferenceF32(i+1, outputs[i],"Ref")
  147. def writeFTests(config):
  148. writeFTest(config,[braycurtis,canberra,chebyshev,cityblock,correlation,cosine,euclidean])
  149. def writeBTests(config):
  150. writeBTest(config,[dice,hamming,jaccard,kulsinski,rogerstanimoto,russellrao,sokalmichener,sokalsneath,yule])
  151. def writeFBenchmark(config):
  152. NBSAMPLES=256
  153. va = np.random.randn(NBSAMPLES)
  154. vb = np.random.randn(NBSAMPLES)
  155. inputsA = list(va)
  156. inputsB = list(vb)
  157. va = np.abs(va)
  158. va = list(va / np.sum(va))
  159. vb = np.abs(vb)
  160. vb = list(vb / np.sum(vb))
  161. config.writeInput(1, inputsA,"InputBenchA")
  162. config.writeInput(1, inputsB,"InputBenchB")
  163. config.writeInput(1, va,"InputBenchProbaA")
  164. config.writeInput(1, vb,"InputBenchProbaB")
  165. def writeUBenchmark(config):
  166. NBSAMPLES=256*32
  167. va = np.random.choice([0,1],NBSAMPLES)
  168. vb = np.random.choice([0,1],NBSAMPLES)
  169. pva = list(Tools.packset(va))
  170. pvb = list(Tools.packset(vb))
  171. config.writeInput(1, pva,"InputBenchA")
  172. config.writeInput(1, pvb,"InputBenchB")
  173. def generatePatterns():
  174. PATTERNDIR = os.path.join("Patterns","DSP","Distance","Distance")
  175. PARAMDIR = os.path.join("Parameters","DSP","Distance","Distance")
  176. configf64=Tools.Config(PATTERNDIR,PARAMDIR,"f64")
  177. configf32=Tools.Config(PATTERNDIR,PARAMDIR,"f32")
  178. configf16=Tools.Config(PATTERNDIR,PARAMDIR,"f16")
  179. configu32=Tools.Config(PATTERNDIR,PARAMDIR,"u32")
  180. configf32.setOverwrite(False)
  181. configf16.setOverwrite(False)
  182. configu32.setOverwrite(False)
  183. writeFTests(configf64)
  184. writeFTests(configf32)
  185. writeFTests(configf16)
  186. writeBTests(configu32)
  187. writeFBenchmark(configf32)
  188. writeFBenchmark(configf16)
  189. writeUBenchmark(configu32)
  190. if __name__ == '__main__':
  191. generatePatterns()