UnaryTestsF16.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616
  1. #include "UnaryTestsF16.h"
  2. #include <stdio.h>
  3. #include "Error.h"
  4. #define SNR_THRESHOLD 57
  5. /*
  6. Reference patterns are generated with
  7. a double precision computation.
  8. */
  9. #define REL_ERROR (1.1e-3)
  10. #define ABS_ERROR (1.1e-3)
  11. /*
  12. Comparisons for inverse
  13. */
  14. /* Not very accurate for big matrix.
  15. But big matrix needed for checking the vectorized code */
  16. #define SNR_THRESHOLD_INV 45
  17. #define REL_ERROR_INV (3.0e-2)
  18. #define ABS_ERROR_INV (3.0e-2)
  19. #define REL_ERROR_SOLVE (6.0e-2)
  20. #define ABS_ERROR_SOLVE (2.0e-2)
  21. /*
  22. Comparison for Cholesky
  23. */
  24. #define SNR_THRESHOLD_CHOL 45
  25. #define REL_ERROR_CHOL (3.0e-3)
  26. #define ABS_ERROR_CHOL (3.0e-2)
  27. /* Upper bound of maximum matrix dimension used by Python */
  28. #define MAXMATRIXDIM 40
  29. #define LOADDATA2() \
  30. const float16_t *inp1=input1.ptr(); \
  31. const float16_t *inp2=input2.ptr(); \
  32. \
  33. float16_t *ap=a.ptr(); \
  34. float16_t *bp=b.ptr(); \
  35. \
  36. float16_t *outp=output.ptr(); \
  37. int16_t *dimsp = dims.ptr(); \
  38. int nbMatrixes = dims.nbSamples() >> 1;\
  39. int rows,columns; \
  40. int i;
  41. #define LOADDATA1() \
  42. const float16_t *inp1=input1.ptr(); \
  43. \
  44. float16_t *ap=a.ptr(); \
  45. \
  46. float16_t *outp=output.ptr(); \
  47. int16_t *dimsp = dims.ptr(); \
  48. int nbMatrixes = dims.nbSamples() >> 1;\
  49. int rows,columns; \
  50. int i;
  51. #define PREPAREDATA2() \
  52. in1.numRows=rows; \
  53. in1.numCols=columns; \
  54. memcpy((void*)ap,(const void*)inp1,sizeof(float16_t)*rows*columns);\
  55. in1.pData = ap; \
  56. \
  57. in2.numRows=rows; \
  58. in2.numCols=columns; \
  59. memcpy((void*)bp,(const void*)inp2,sizeof(float16_t)*rows*columns);\
  60. in2.pData = bp; \
  61. \
  62. out.numRows=rows; \
  63. out.numCols=columns; \
  64. out.pData = outp;
  65. #define PREPAREDATALT() \
  66. in1.numRows=rows; \
  67. in1.numCols=rows; \
  68. memcpy((void*)ap,(const void*)inp1,sizeof(float16_t)*rows*rows); \
  69. in1.pData = ap; \
  70. \
  71. in2.numRows=rows; \
  72. in2.numCols=columns; \
  73. memcpy((void*)bp,(const void*)inp2,sizeof(float16_t)*rows*columns);\
  74. in2.pData = bp; \
  75. \
  76. out.numRows=rows; \
  77. out.numCols=columns; \
  78. out.pData = outp;
  79. #define PREPAREDATA1(TRANSPOSED) \
  80. in1.numRows=rows; \
  81. in1.numCols=columns; \
  82. memcpy((void*)ap,(const void*)inp1,sizeof(float16_t)*rows*columns);\
  83. in1.pData = ap; \
  84. \
  85. if (TRANSPOSED) \
  86. { \
  87. out.numRows=columns; \
  88. out.numCols=rows; \
  89. } \
  90. else \
  91. { \
  92. out.numRows=rows; \
  93. out.numCols=columns; \
  94. } \
  95. out.pData = outp;
  96. #define PREPAREDATA1C(TRANSPOSED) \
  97. in1.numRows=rows; \
  98. in1.numCols=columns; \
  99. memcpy((void*)ap,(const void*)inp1,2*sizeof(float16_t)*rows*columns);\
  100. in1.pData = ap; \
  101. \
  102. if (TRANSPOSED) \
  103. { \
  104. out.numRows=columns; \
  105. out.numCols=rows; \
  106. } \
  107. else \
  108. { \
  109. out.numRows=rows; \
  110. out.numCols=columns; \
  111. } \
  112. out.pData = outp;
  113. #define LOADVECDATA2() \
  114. const float16_t *inp1=input1.ptr(); \
  115. const float16_t *inp2=input2.ptr(); \
  116. \
  117. float16_t *ap=a.ptr(); \
  118. float16_t *bp=b.ptr(); \
  119. \
  120. float16_t *outp=output.ptr(); \
  121. int16_t *dimsp = dims.ptr(); \
  122. int nbMatrixes = dims.nbSamples() / 2;\
  123. int rows,internal; \
  124. int i;
  125. #define PREPAREVECDATA2() \
  126. in1.numRows=rows; \
  127. in1.numCols=internal; \
  128. memcpy((void*)ap,(const void*)inp1,sizeof(float16_t)*rows*internal);\
  129. in1.pData = ap; \
  130. \
  131. memcpy((void*)bp,(const void*)inp2,sizeof(float16_t)*internal);
  132. void UnaryTestsF16::test_mat_vec_mult_f16()
  133. {
  134. LOADVECDATA2();
  135. for(i=0;i < nbMatrixes ; i ++)
  136. {
  137. rows = *dimsp++;
  138. internal = *dimsp++;
  139. PREPAREVECDATA2();
  140. arm_mat_vec_mult_f16(&this->in1, bp, outp);
  141. outp += rows ;
  142. }
  143. ASSERT_EMPTY_TAIL(output);
  144. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  145. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  146. }
  147. void UnaryTestsF16::test_mat_add_f16()
  148. {
  149. LOADDATA2();
  150. arm_status status;
  151. for(i=0;i < nbMatrixes ; i ++)
  152. {
  153. rows = *dimsp++;
  154. columns = *dimsp++;
  155. PREPAREDATA2();
  156. status=arm_mat_add_f16(&this->in1,&this->in2,&this->out);
  157. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  158. outp += (rows * columns);
  159. }
  160. ASSERT_EMPTY_TAIL(output);
  161. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  162. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  163. }
  164. void UnaryTestsF16::test_mat_sub_f16()
  165. {
  166. LOADDATA2();
  167. arm_status status;
  168. for(i=0;i < nbMatrixes ; i ++)
  169. {
  170. rows = *dimsp++;
  171. columns = *dimsp++;
  172. PREPAREDATA2();
  173. status=arm_mat_sub_f16(&this->in1,&this->in2,&this->out);
  174. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  175. outp += (rows * columns);
  176. }
  177. ASSERT_EMPTY_TAIL(output);
  178. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  179. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  180. }
  181. void UnaryTestsF16::test_mat_scale_f16()
  182. {
  183. LOADDATA1();
  184. arm_status status;
  185. for(i=0;i < nbMatrixes ; i ++)
  186. {
  187. rows = *dimsp++;
  188. columns = *dimsp++;
  189. PREPAREDATA1(false);
  190. status=arm_mat_scale_f16(&this->in1,0.5f,&this->out);
  191. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  192. outp += (rows * columns);
  193. }
  194. ASSERT_EMPTY_TAIL(output);
  195. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  196. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  197. }
  198. void UnaryTestsF16::test_mat_trans_f16()
  199. {
  200. LOADDATA1();
  201. arm_status status;
  202. for(i=0;i < nbMatrixes ; i ++)
  203. {
  204. rows = *dimsp++;
  205. columns = *dimsp++;
  206. PREPAREDATA1(true);
  207. status=arm_mat_trans_f16(&this->in1,&this->out);
  208. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  209. outp += (rows * columns);
  210. }
  211. ASSERT_EMPTY_TAIL(output);
  212. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  213. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  214. }
  215. void UnaryTestsF16::test_mat_cmplx_trans_f16()
  216. {
  217. LOADDATA1();
  218. arm_status status;
  219. for(i=0;i < nbMatrixes ; i ++)
  220. {
  221. rows = *dimsp++;
  222. columns = *dimsp++;
  223. PREPAREDATA1C(true);
  224. status=arm_mat_cmplx_trans_f16(&this->in1,&this->out);
  225. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  226. outp += 2*(rows * columns);
  227. }
  228. ASSERT_EMPTY_TAIL(output);
  229. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  230. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  231. }
  232. static void refInnerTail(float16_t *b)
  233. {
  234. b[0] = 1.0f;
  235. b[1] = -2.0f;
  236. b[2] = 3.0f;
  237. b[3] = -4.0f;
  238. }
  239. static void checkInnerTail(float16_t *b)
  240. {
  241. ASSERT_TRUE(b[0] == 1.0f);
  242. ASSERT_TRUE(b[1] == -2.0f);
  243. ASSERT_TRUE(b[2] == 3.0f);
  244. ASSERT_TRUE(b[3] == -4.0f);
  245. }
  246. void UnaryTestsF16::test_mat_inverse_f16()
  247. {
  248. const float16_t *inp1=input1.ptr();
  249. float16_t *ap=a.ptr();
  250. float16_t *outp=output.ptr();
  251. int16_t *dimsp = dims.ptr();
  252. int nbMatrixes = dims.nbSamples();
  253. int rows,columns;
  254. int i;
  255. arm_status status;
  256. for(i=0;i < nbMatrixes ; i ++)
  257. {
  258. rows = *dimsp++;
  259. columns = rows;
  260. PREPAREDATA1(false);
  261. refInnerTail(outp+(rows * columns));
  262. status=arm_mat_inverse_f16(&this->in1,&this->out);
  263. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  264. outp += (rows * columns);
  265. inp1 += (rows * columns);
  266. checkInnerTail(outp);
  267. }
  268. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD_INV);
  269. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR_INV,REL_ERROR_INV);
  270. }
  271. void UnaryTestsF16::test_mat_cholesky_dpo_f16()
  272. {
  273. float16_t *ap=a.ptr();
  274. const float16_t *inp1=input1.ptr();
  275. float16_t *outp=output.ptr();
  276. int16_t *dimsp = dims.ptr();
  277. int nbMatrixes = dims.nbSamples();
  278. int rows,columns;
  279. int i;
  280. arm_status status;
  281. for(i=0;i < nbMatrixes ; i ++)
  282. {
  283. rows = *dimsp++;
  284. columns = rows;
  285. PREPAREDATA1(false);
  286. status=arm_mat_cholesky_f16(&this->in1,&this->out);
  287. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  288. outp += (rows * columns);
  289. inp1 += (rows * columns);
  290. }
  291. ASSERT_EMPTY_TAIL(output);
  292. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD_CHOL);
  293. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL);
  294. }
  295. void UnaryTestsF16::test_solve_upper_triangular_f16()
  296. {
  297. float16_t *ap=a.ptr();
  298. const float16_t *inp1=input1.ptr();
  299. float16_t *bp=b.ptr();
  300. const float16_t *inp2=input2.ptr();
  301. float16_t *outp=output.ptr();
  302. int16_t *dimsp = dims.ptr();
  303. int nbMatrixes = dims.nbSamples() >> 1;
  304. int rows,columns;
  305. int i;
  306. arm_status status;
  307. for(i=0;i < nbMatrixes ; i ++)
  308. {
  309. rows = *dimsp++;
  310. columns = *dimsp++;
  311. PREPAREDATALT();
  312. status=arm_mat_solve_upper_triangular_f16(&this->in1,&this->in2,&this->out);
  313. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  314. outp += (rows * columns);
  315. inp1 += (rows * rows);
  316. inp2 += (rows * columns);
  317. }
  318. ASSERT_EMPTY_TAIL(output);
  319. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  320. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_SOLVE,REL_ERROR_SOLVE);
  321. }
  322. void UnaryTestsF16::test_solve_lower_triangular_f16()
  323. {
  324. float16_t *ap=a.ptr();
  325. const float16_t *inp1=input1.ptr();
  326. float16_t *bp=b.ptr();
  327. const float16_t *inp2=input2.ptr();
  328. float16_t *outp=output.ptr();
  329. int16_t *dimsp = dims.ptr();
  330. int nbMatrixes = dims.nbSamples()>>1;
  331. int rows,columns;
  332. int i;
  333. arm_status status;
  334. for(i=0;i < nbMatrixes ; i ++)
  335. {
  336. rows = *dimsp++;
  337. columns = *dimsp++;
  338. PREPAREDATALT();
  339. status=arm_mat_solve_lower_triangular_f16(&this->in1,&this->in2,&this->out);
  340. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  341. outp += (rows * columns);
  342. inp1 += (rows * rows);
  343. inp2 += (rows * columns);
  344. }
  345. ASSERT_EMPTY_TAIL(output);
  346. ASSERT_SNR(output,ref,(float16_t)SNR_THRESHOLD);
  347. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_SOLVE,REL_ERROR_SOLVE);
  348. }
  349. void UnaryTestsF16::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
  350. {
  351. (void)params;
  352. switch(id)
  353. {
  354. case TEST_MAT_ADD_F16_1:
  355. input1.reload(UnaryTestsF16::INPUTS1_F16_ID,mgr);
  356. input2.reload(UnaryTestsF16::INPUTS2_F16_ID,mgr);
  357. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  358. ref.reload(UnaryTestsF16::REFADD1_F16_ID,mgr);
  359. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  360. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  361. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPB_F16_ID,mgr);
  362. break;
  363. case TEST_MAT_SUB_F16_2:
  364. input1.reload(UnaryTestsF16::INPUTS1_F16_ID,mgr);
  365. input2.reload(UnaryTestsF16::INPUTS2_F16_ID,mgr);
  366. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  367. ref.reload(UnaryTestsF16::REFSUB1_F16_ID,mgr);
  368. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  369. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  370. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPB_F16_ID,mgr);
  371. break;
  372. case TEST_MAT_SCALE_F16_3:
  373. input1.reload(UnaryTestsF16::INPUTS1_F16_ID,mgr);
  374. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  375. ref.reload(UnaryTestsF16::REFSCALE1_F16_ID,mgr);
  376. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  377. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  378. break;
  379. case TEST_MAT_TRANS_F16_4:
  380. input1.reload(UnaryTestsF16::INPUTS1_F16_ID,mgr);
  381. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  382. ref.reload(UnaryTestsF16::REFTRANS1_F16_ID,mgr);
  383. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  384. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  385. break;
  386. case TEST_MAT_INVERSE_F16_5:
  387. input1.reload(UnaryTestsF16::INPUTSINV_F16_ID,mgr);
  388. dims.reload(UnaryTestsF16::DIMSINVERT1_S16_ID,mgr);
  389. ref.reload(UnaryTestsF16::REFINV1_F16_ID,mgr);
  390. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  391. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  392. break;
  393. case TEST_MAT_VEC_MULT_F16_6:
  394. input1.reload(UnaryTestsF16::INPUTS1_F16_ID,mgr);
  395. input2.reload(UnaryTestsF16::INPUTVEC1_F16_ID,mgr);
  396. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  397. ref.reload(UnaryTestsF16::REFVECMUL1_F16_ID,mgr);
  398. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  399. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  400. b.create(MAXMATRIXDIM,UnaryTestsF16::TMPB_F16_ID,mgr);
  401. break;
  402. case TEST_MAT_CMPLX_TRANS_F16_7:
  403. input1.reload(UnaryTestsF16::INPUTSC1_F16_ID,mgr);
  404. dims.reload(UnaryTestsF16::DIMSUNARY1_S16_ID,mgr);
  405. ref.reload(UnaryTestsF16::REFTRANSC1_F16_ID,mgr);
  406. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  407. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  408. break;
  409. case TEST_MAT_CHOLESKY_DPO_F16_8:
  410. input1.reload(UnaryTestsF16::INPUTSCHOLESKY1_DPO_F16_ID,mgr);
  411. dims.reload(UnaryTestsF16::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  412. ref.reload(UnaryTestsF16::REFCHOLESKY1_DPO_F16_ID,mgr);
  413. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  414. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  415. break;
  416. case TEST_SOLVE_UPPER_TRIANGULAR_F16_9:
  417. input1.reload(UnaryTestsF16::INPUT_MAT_UTSOLVE_F16_ID,mgr);
  418. input2.reload(UnaryTestsF16::INPUT_VEC_LTSOLVE_F16_ID,mgr);
  419. dims.reload(UnaryTestsF16::DIM_LTSOLVE_F16_ID,mgr);
  420. ref.reload(UnaryTestsF16::REF_UT_SOLVE_F16_ID,mgr);
  421. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  422. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  423. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPB_F16_ID,mgr);
  424. break;
  425. case TEST_SOLVE_LOWER_TRIANGULAR_F16_10:
  426. input1.reload(UnaryTestsF16::INPUT_MAT_LTSOLVE_F16_ID,mgr);
  427. input2.reload(UnaryTestsF16::INPUT_VEC_LTSOLVE_F16_ID,mgr);
  428. dims.reload(UnaryTestsF16::DIM_LTSOLVE_F16_ID,mgr);
  429. ref.reload(UnaryTestsF16::REF_LT_SOLVE_F16_ID,mgr);
  430. output.create(ref.nbSamples(),UnaryTestsF16::OUT_F16_ID,mgr);
  431. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPA_F16_ID,mgr);
  432. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF16::TMPB_F16_ID,mgr);
  433. break;
  434. }
  435. }
  436. void UnaryTestsF16::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
  437. {
  438. (void)id;
  439. //output.dump(mgr);
  440. (void)mgr;
  441. }