UnaryTestsF32.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891
  1. #include "UnaryTestsF32.h"
  2. #include "Error.h"
  3. #define SNR_THRESHOLD 120
  4. /*
  5. Reference patterns are generated with
  6. a double precision computation.
  7. */
  8. #define REL_ERROR (1.0e-5)
  9. #define ABS_ERROR (1.0e-5)
  10. /*
  11. Comparisons for inverse
  12. */
  13. /* Not very accurate for big matrix.
  14. But big matrix needed for checking the vectorized code */
  15. #define SNR_THRESHOLD_INV 67
  16. #define REL_ERROR_INV (1.0e-3)
  17. #define ABS_ERROR_INV (1.0e-3)
  18. /*
  19. Comparison for Cholesky
  20. */
  21. #define SNR_THRESHOLD_CHOL 92
  22. #define REL_ERROR_CHOL (1.0e-5)
  23. #define ABS_ERROR_CHOL (5.0e-4)
  24. /* LDLT comparison */
  25. #define REL_ERROR_LDLT (1e-5)
  26. #define ABS_ERROR_LDLT (1e-5)
  27. #define REL_ERROR_LDLT_SPDO (1e-5)
  28. #define ABS_ERROR_LDLT_SDPO (2e-1)
  29. /* Upper bound of maximum matrix dimension used by Python */
  30. #define MAXMATRIXDIM 40
  31. static void checkInnerTailOverflow(float32_t *b)
  32. {
  33. ASSERT_TRUE(b[0] == 0);
  34. ASSERT_TRUE(b[1] == 0);
  35. ASSERT_TRUE(b[2] == 0);
  36. ASSERT_TRUE(b[3] == 0);
  37. }
  38. #define LOADDATA2() \
  39. const float32_t *inp1=input1.ptr(); \
  40. const float32_t *inp2=input2.ptr(); \
  41. \
  42. float32_t *ap=a.ptr(); \
  43. float32_t *bp=b.ptr(); \
  44. \
  45. float32_t *outp=output.ptr(); \
  46. int16_t *dimsp = dims.ptr(); \
  47. int nbMatrixes = dims.nbSamples() >> 1;\
  48. int rows,columns; \
  49. int i;
  50. #define LOADDATA1() \
  51. const float32_t *inp1=input1.ptr(); \
  52. \
  53. float32_t *ap=a.ptr(); \
  54. \
  55. float32_t *outp=output.ptr(); \
  56. int16_t *dimsp = dims.ptr(); \
  57. int nbMatrixes = dims.nbSamples() >> 1;\
  58. int rows,columns; \
  59. int i;
  60. #define PREPAREDATA2() \
  61. in1.numRows=rows; \
  62. in1.numCols=columns; \
  63. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  64. in1.pData = ap; \
  65. \
  66. in2.numRows=rows; \
  67. in2.numCols=columns; \
  68. memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\
  69. in2.pData = bp; \
  70. \
  71. out.numRows=rows; \
  72. out.numCols=columns; \
  73. out.pData = outp;
  74. #define PREPAREDATALT() \
  75. in1.numRows=rows; \
  76. in1.numCols=rows; \
  77. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*rows); \
  78. in1.pData = ap; \
  79. \
  80. in2.numRows=rows; \
  81. in2.numCols=columns; \
  82. memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\
  83. in2.pData = bp; \
  84. \
  85. out.numRows=rows; \
  86. out.numCols=columns; \
  87. out.pData = outp;
  88. #define PREPAREDATA1(TRANSPOSED) \
  89. in1.numRows=rows; \
  90. in1.numCols=columns; \
  91. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  92. in1.pData = ap; \
  93. \
  94. if (TRANSPOSED) \
  95. { \
  96. out.numRows=columns; \
  97. out.numCols=rows; \
  98. } \
  99. else \
  100. { \
  101. out.numRows=rows; \
  102. out.numCols=columns; \
  103. } \
  104. out.pData = outp;
  105. #define PREPAREDATA1C(TRANSPOSED) \
  106. in1.numRows=rows; \
  107. in1.numCols=columns; \
  108. memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*columns);\
  109. in1.pData = ap; \
  110. \
  111. if (TRANSPOSED) \
  112. { \
  113. out.numRows=columns; \
  114. out.numCols=rows; \
  115. } \
  116. else \
  117. { \
  118. out.numRows=rows; \
  119. out.numCols=columns; \
  120. } \
  121. out.pData = outp;
  122. #define LOADVECDATA2() \
  123. const float32_t *inp1=input1.ptr(); \
  124. const float32_t *inp2=input2.ptr(); \
  125. \
  126. float32_t *ap=a.ptr(); \
  127. float32_t *bp=b.ptr(); \
  128. \
  129. float32_t *outp=output.ptr(); \
  130. int16_t *dimsp = dims.ptr(); \
  131. int nbMatrixes = dims.nbSamples() / 2;\
  132. int rows,internal; \
  133. int i;
  134. #define PREPAREVECDATA2() \
  135. in1.numRows=rows; \
  136. in1.numCols=internal; \
  137. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*internal);\
  138. in1.pData = ap; \
  139. \
  140. memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*internal);
  141. #define PREPAREDATALL1() \
  142. in1.numRows=rows; \
  143. in1.numCols=columns; \
  144. memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
  145. in1.pData = ap; \
  146. \
  147. outll.numRows=rows; \
  148. outll.numCols=columns; \
  149. \
  150. outll.pData = outllp;
  151. #define SWAP_ROWS(A,i,j) \
  152. for(int w=0;w < n; w++) \
  153. { \
  154. float64_t tmp; \
  155. tmp = A[i*n + w]; \
  156. A[i*n + w] = A[j*n + w];\
  157. A[j*n + w] = tmp; \
  158. }
  159. void UnaryTestsF32::test_mat_vec_mult_f32()
  160. {
  161. LOADVECDATA2();
  162. for(i=0;i < nbMatrixes ; i ++)
  163. {
  164. rows = *dimsp++;
  165. internal = *dimsp++;
  166. PREPAREVECDATA2();
  167. arm_mat_vec_mult_f32(&this->in1, bp, outp);
  168. outp += rows ;
  169. checkInnerTailOverflow(outp);
  170. }
  171. ASSERT_EMPTY_TAIL(output);
  172. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  173. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  174. }
  175. void UnaryTestsF32::test_mat_add_f32()
  176. {
  177. LOADDATA2();
  178. arm_status status;
  179. for(i=0;i < nbMatrixes ; i ++)
  180. {
  181. rows = *dimsp++;
  182. columns = *dimsp++;
  183. PREPAREDATA2();
  184. status=arm_mat_add_f32(&this->in1,&this->in2,&this->out);
  185. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  186. outp += (rows * columns);
  187. checkInnerTailOverflow(outp);
  188. }
  189. ASSERT_EMPTY_TAIL(output);
  190. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  191. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  192. }
  193. void UnaryTestsF32::test_mat_sub_f32()
  194. {
  195. LOADDATA2();
  196. arm_status status;
  197. for(i=0;i < nbMatrixes ; i ++)
  198. {
  199. rows = *dimsp++;
  200. columns = *dimsp++;
  201. PREPAREDATA2();
  202. status=arm_mat_sub_f32(&this->in1,&this->in2,&this->out);
  203. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  204. outp += (rows * columns);
  205. checkInnerTailOverflow(outp);
  206. }
  207. ASSERT_EMPTY_TAIL(output);
  208. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  209. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  210. }
  211. void UnaryTestsF32::test_mat_scale_f32()
  212. {
  213. LOADDATA1();
  214. arm_status status;
  215. for(i=0;i < nbMatrixes ; i ++)
  216. {
  217. rows = *dimsp++;
  218. columns = *dimsp++;
  219. PREPAREDATA1(false);
  220. status=arm_mat_scale_f32(&this->in1,0.5f,&this->out);
  221. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  222. outp += (rows * columns);
  223. checkInnerTailOverflow(outp);
  224. }
  225. ASSERT_EMPTY_TAIL(output);
  226. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  227. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  228. }
  229. void UnaryTestsF32::test_mat_trans_f32()
  230. {
  231. LOADDATA1();
  232. arm_status status;
  233. for(i=0;i < nbMatrixes ; i ++)
  234. {
  235. rows = *dimsp++;
  236. columns = *dimsp++;
  237. PREPAREDATA1(true);
  238. status=arm_mat_trans_f32(&this->in1,&this->out);
  239. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  240. outp += (rows * columns);
  241. checkInnerTailOverflow(outp);
  242. }
  243. ASSERT_EMPTY_TAIL(output);
  244. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  245. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  246. }
  247. void UnaryTestsF32::test_mat_cmplx_trans_f32()
  248. {
  249. LOADDATA1();
  250. arm_status status;
  251. for(i=0;i < nbMatrixes ; i ++)
  252. {
  253. rows = *dimsp++;
  254. columns = *dimsp++;
  255. PREPAREDATA1C(true);
  256. status=arm_mat_cmplx_trans_f32(&this->in1,&this->out);
  257. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  258. outp += 2*(rows * columns);
  259. checkInnerTailOverflow(outp);
  260. }
  261. ASSERT_EMPTY_TAIL(output);
  262. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  263. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
  264. }
  265. static void refInnerTail(float32_t *b)
  266. {
  267. b[0] = 1.0f;
  268. b[1] = -2.0f;
  269. b[2] = 3.0f;
  270. b[3] = -4.0f;
  271. }
  272. static void checkInnerTail(float32_t *b)
  273. {
  274. ASSERT_TRUE(b[0] == 1.0f);
  275. ASSERT_TRUE(b[1] == -2.0f);
  276. ASSERT_TRUE(b[2] == 3.0f);
  277. ASSERT_TRUE(b[3] == -4.0f);
  278. }
  279. void UnaryTestsF32::test_mat_inverse_f32()
  280. {
  281. const float32_t *inp1=input1.ptr();
  282. float32_t *ap=a.ptr();
  283. float32_t *outp=output.ptr();
  284. int16_t *dimsp = dims.ptr();
  285. int nbMatrixes = dims.nbSamples();
  286. int rows,columns;
  287. int i;
  288. arm_status status;
  289. for(i=0;i < nbMatrixes ; i ++)
  290. {
  291. rows = *dimsp++;
  292. columns = rows;
  293. PREPAREDATA1(false);
  294. refInnerTail(outp+(rows * columns));
  295. status=arm_mat_inverse_f32(&this->in1,&this->out);
  296. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  297. outp += (rows * columns);
  298. inp1 += (rows * columns);
  299. checkInnerTail(outp);
  300. }
  301. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_INV);
  302. ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR_INV,REL_ERROR_INV);
  303. }
  304. void UnaryTestsF32::test_mat_cholesky_dpo_f32()
  305. {
  306. float32_t *ap=a.ptr();
  307. const float32_t *inp1=input1.ptr();
  308. float32_t *outp=output.ptr();
  309. int16_t *dimsp = dims.ptr();
  310. int nbMatrixes = dims.nbSamples();
  311. int rows,columns;
  312. int i;
  313. arm_status status;
  314. for(i=0;i < nbMatrixes ; i ++)
  315. {
  316. rows = *dimsp++;
  317. columns = rows;
  318. PREPAREDATA1(false);
  319. status=arm_mat_cholesky_f32(&this->in1,&this->out);
  320. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  321. outp += (rows * columns);
  322. inp1 += (rows * columns);
  323. checkInnerTailOverflow(outp);
  324. }
  325. ASSERT_EMPTY_TAIL(output);
  326. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_CHOL);
  327. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL);
  328. }
  329. void UnaryTestsF32::test_solve_upper_triangular_f32()
  330. {
  331. float32_t *ap=a.ptr();
  332. const float32_t *inp1=input1.ptr();
  333. float32_t *bp=b.ptr();
  334. const float32_t *inp2=input2.ptr();
  335. float32_t *outp=output.ptr();
  336. int16_t *dimsp = dims.ptr();
  337. int nbMatrixes = dims.nbSamples()>>1;
  338. int rows,columns;
  339. int i;
  340. arm_status status;
  341. for(i=0;i < nbMatrixes ; i ++)
  342. {
  343. rows = *dimsp++;
  344. columns = *dimsp++;
  345. PREPAREDATALT();
  346. status=arm_mat_solve_upper_triangular_f32(&this->in1,&this->in2,&this->out);
  347. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  348. outp += (rows * columns);
  349. inp1 += (rows * rows);
  350. inp2 += (rows * columns);
  351. checkInnerTailOverflow(outp);
  352. }
  353. ASSERT_EMPTY_TAIL(output);
  354. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  355. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  356. }
  357. void UnaryTestsF32::test_solve_lower_triangular_f32()
  358. {
  359. float32_t *ap=a.ptr();
  360. const float32_t *inp1=input1.ptr();
  361. float32_t *bp=b.ptr();
  362. const float32_t *inp2=input2.ptr();
  363. float32_t *outp=output.ptr();
  364. int16_t *dimsp = dims.ptr();
  365. int nbMatrixes = dims.nbSamples() >> 1;
  366. int rows,columns;
  367. int i;
  368. arm_status status;
  369. for(i=0;i < nbMatrixes ; i ++)
  370. {
  371. rows = *dimsp++;
  372. columns = *dimsp++;
  373. PREPAREDATALT();
  374. status=arm_mat_solve_lower_triangular_f32(&this->in1,&this->in2,&this->out);
  375. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  376. outp += (rows * columns);
  377. inp1 += (rows * rows);
  378. inp2 += (rows * columns);
  379. checkInnerTailOverflow(outp);
  380. }
  381. ASSERT_EMPTY_TAIL(output);
  382. ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
  383. ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR);
  384. }
  385. static void trans_f64(const float64_t *src, float64_t *dst, int n)
  386. {
  387. for(int r=0; r<n ; r++)
  388. {
  389. for(int c=0; c<n ; c++)
  390. {
  391. dst[c*n+r] = src[r*n+c];
  392. }
  393. }
  394. }
  395. static void trans_f32_f64(const float32_t *src, float64_t *dst, int n)
  396. {
  397. for(int r=0; r<n ; r++)
  398. {
  399. for(int c=0; c<n ; c++)
  400. {
  401. dst[c*n+r] = (float64_t)src[r*n+c];
  402. }
  403. }
  404. }
  405. static void mult_f32_f64(const float32_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  406. {
  407. for(int r=0; r<n ; r++)
  408. {
  409. for(int c=0; c<n ; c++)
  410. {
  411. float64_t sum=0.0;
  412. for(int k=0; k < n ; k++)
  413. {
  414. sum += (float64_t)srcA[r*n+k] * srcB[k*n+c];
  415. }
  416. dst[r*n+c] = sum;
  417. }
  418. }
  419. }
  420. static void mult_f64_f64(const float64_t *srcA, const float64_t *srcB, float64_t *dst,int n)
  421. {
  422. for(int r=0; r<n ; r++)
  423. {
  424. for(int c=0; c<n ; c++)
  425. {
  426. float64_t sum=0.0;
  427. for(int k=0; k < n ; k++)
  428. {
  429. sum += srcA[r*n+k] * srcB[k*n+c];
  430. }
  431. dst[r*n+c] = sum;
  432. }
  433. }
  434. }
  435. void UnaryTestsF32::compute_ldlt_error(const int n,const int16_t *outpp)
  436. {
  437. float64_t *tmpa = tmpapat.ptr() ;
  438. float64_t *tmpb = tmpbpat.ptr() ;
  439. float64_t *tmpc = tmpcpat.ptr() ;
  440. /* Compute P A P^t */
  441. // Create identiy matrix
  442. for(int r=0; r < n; r++)
  443. {
  444. for(int c=0; c < n; c++)
  445. {
  446. if (r == c)
  447. {
  448. tmpa[r*n+c] = 1.0;
  449. }
  450. else
  451. {
  452. tmpa[r*n+c] = 0.0;
  453. }
  454. }
  455. }
  456. // Create permutation matrix
  457. for(int r=0;r < n; r++)
  458. {
  459. SWAP_ROWS(tmpa,r,outpp[r]);
  460. }
  461. trans_f64((const float64_t*)tmpa,tmpb,n);
  462. mult_f32_f64((const float32_t*)this->in1.pData,(const float64_t*)tmpb,tmpc,n);
  463. mult_f64_f64((const float64_t*)tmpa,(const float64_t*)tmpc,outa,n);
  464. /* Compute L D L^t */
  465. trans_f32_f64((const float32_t*)this->outll.pData,tmpc,n);
  466. mult_f32_f64((const float32_t*)this->outd.pData,(const float64_t*)tmpc,tmpa,n);
  467. mult_f32_f64((const float32_t*)this->outll.pData,(const float64_t*)tmpa,outb,n);
  468. }
  469. void UnaryTestsF32::test_mat_ldl_f32()
  470. {
  471. float32_t *ap=a.ptr();
  472. const float32_t *inp1=input1.ptr();
  473. float32_t *outllp=outputll.ptr();
  474. float32_t *outdp=outputd.ptr();
  475. int16_t *outpp=outputp.ptr();
  476. outa=outputa.ptr();
  477. outb=outputb.ptr();
  478. int16_t *dimsp = dims.ptr();
  479. int nbMatrixes = dims.nbSamples();
  480. int rows,columns;
  481. int i;
  482. arm_status status;
  483. for(i=0;i < nbMatrixes ; i ++)
  484. {
  485. rows = *dimsp++;
  486. columns = rows;
  487. PREPAREDATALL1();
  488. outd.numRows=rows;
  489. outd.numCols=columns;
  490. outd.pData=outdp;
  491. memset(outpp,0,rows*sizeof(uint16_t));
  492. memset(outdp,0,columns*rows*sizeof(float32_t));
  493. status=arm_mat_ldlt_f32(&this->in1,&this->outll,&this->outd,(uint16_t*)outpp);
  494. ASSERT_TRUE(status==ARM_MATH_SUCCESS);
  495. compute_ldlt_error(rows,outpp);
  496. outllp += (rows * columns);
  497. outdp += (rows * columns);
  498. outpp += rows;
  499. outa += (rows * columns);
  500. outb +=(rows * columns);
  501. inp1 += (rows * columns);
  502. checkInnerTailOverflow(outllp);
  503. checkInnerTailOverflow(outdp);
  504. }
  505. ASSERT_EMPTY_TAIL(outputll);
  506. ASSERT_EMPTY_TAIL(outputd);
  507. ASSERT_EMPTY_TAIL(outputp);
  508. ASSERT_EMPTY_TAIL(outputa);
  509. ASSERT_EMPTY_TAIL(outputb);
  510. ASSERT_CLOSE_ERROR(outputa,outputb,snrAbs,snrRel);
  511. }
  512. void UnaryTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
  513. {
  514. (void)params;
  515. switch(id)
  516. {
  517. case TEST_MAT_ADD_F32_1:
  518. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  519. input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
  520. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  521. ref.reload(UnaryTestsF32::REFADD1_F32_ID,mgr);
  522. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  523. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  524. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  525. break;
  526. case TEST_MAT_SUB_F32_2:
  527. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  528. input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
  529. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  530. ref.reload(UnaryTestsF32::REFSUB1_F32_ID,mgr);
  531. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  532. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  533. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  534. break;
  535. case TEST_MAT_SCALE_F32_3:
  536. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  537. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  538. ref.reload(UnaryTestsF32::REFSCALE1_F32_ID,mgr);
  539. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  540. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  541. break;
  542. case TEST_MAT_TRANS_F32_4:
  543. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  544. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  545. ref.reload(UnaryTestsF32::REFTRANS1_F32_ID,mgr);
  546. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  547. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  548. break;
  549. case TEST_MAT_INVERSE_F32_5:
  550. input1.reload(UnaryTestsF32::INPUTSINV_F32_ID,mgr);
  551. dims.reload(UnaryTestsF32::DIMSINVERT1_S16_ID,mgr);
  552. ref.reload(UnaryTestsF32::REFINV1_F32_ID,mgr);
  553. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  554. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  555. break;
  556. case TEST_MAT_VEC_MULT_F32_6:
  557. input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
  558. input2.reload(UnaryTestsF32::INPUTVEC1_F32_ID,mgr);
  559. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  560. ref.reload(UnaryTestsF32::REFVECMUL1_F32_ID,mgr);
  561. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  562. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  563. b.create(MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  564. break;
  565. case TEST_MAT_CMPLX_TRANS_F32_7:
  566. input1.reload(UnaryTestsF32::INPUTSC1_F32_ID,mgr);
  567. dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
  568. ref.reload(UnaryTestsF32::REFTRANSC1_F32_ID,mgr);
  569. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  570. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  571. break;
  572. case TEST_MAT_CHOLESKY_DPO_F32_8:
  573. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
  574. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  575. ref.reload(UnaryTestsF32::REFCHOLESKY1_DPO_F32_ID,mgr);
  576. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  577. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  578. break;
  579. case TEST_SOLVE_UPPER_TRIANGULAR_F32_9:
  580. input1.reload(UnaryTestsF32::INPUT_MAT_UTSOLVE_F32_ID,mgr);
  581. input2.reload(UnaryTestsF32::INPUT_VEC_LTSOLVE_F32_ID,mgr);
  582. dims.reload(UnaryTestsF32::DIM_LTSOLVE_F32_ID,mgr);
  583. ref.reload(UnaryTestsF32::REF_UT_SOLVE_F32_ID,mgr);
  584. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  585. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  586. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  587. break;
  588. case TEST_SOLVE_LOWER_TRIANGULAR_F32_10:
  589. input1.reload(UnaryTestsF32::INPUT_MAT_LTSOLVE_F32_ID,mgr);
  590. input2.reload(UnaryTestsF32::INPUT_VEC_LTSOLVE_F32_ID,mgr);
  591. dims.reload(UnaryTestsF32::DIM_LTSOLVE_F32_ID,mgr);
  592. ref.reload(UnaryTestsF32::REF_LT_SOLVE_F32_ID,mgr);
  593. output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
  594. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  595. b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
  596. break;
  597. case TEST_MAT_LDL_F32_11:
  598. // Definite positive test
  599. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr);
  600. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr);
  601. outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
  602. outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
  603. outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
  604. outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
  605. outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
  606. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  607. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
  608. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
  609. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
  610. this->snrRel=REL_ERROR_LDLT;
  611. this->snrAbs=ABS_ERROR_LDLT;
  612. break;
  613. case TEST_MAT_LDL_F32_12:
  614. // Semi definite positive test
  615. input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_SDPO_F32_ID,mgr);
  616. dims.reload(UnaryTestsF32::DIMSCHOLESKY1_SDPO_S16_ID,mgr);
  617. outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr);
  618. outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr);
  619. outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr);
  620. outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr);
  621. outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr);
  622. a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
  623. tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr);
  624. tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr);
  625. tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr);
  626. this->snrRel=REL_ERROR_LDLT_SPDO;
  627. this->snrAbs=ABS_ERROR_LDLT_SDPO;
  628. break;
  629. }
  630. }
  631. void UnaryTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
  632. {
  633. (void)id;
  634. (void)mgr;
  635. switch(id)
  636. {
  637. case TEST_MAT_LDL_F32_11:
  638. //outputll.dump(mgr);
  639. break;
  640. }
  641. //output.dump(mgr);
  642. }