| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532 |
- /*
- * Copyright (C) 2010-2022 Arm Limited or its affiliates.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /* ----------------------------------------------------------------------
- * Project: CMSIS NN Library
- * Title: arm_nnfunctions.h
- * Description: Public header file for CMSIS NN Library
- *
- * $Date: 19 April 2022
- * $Revision: V.9.0.0
- *
- * Target Processor: Cortex-M CPUs
- * -------------------------------------------------------------------- */
- /**
- \mainpage CMSIS NN Software Library
- *
- * Introduction
- * ------------
- *
- * This user manual describes the CMSIS NN software library,
- * a collection of efficient neural network kernels developed to maximize the
- * performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
- *
- * The library is divided into a number of functions each covering a specific category:
- * - Convolution Functions
- * - Activation Functions
- * - Fully-connected Layer Functions
- * - SVDF Layer Functions
- * - Pooling Functions
- * - Softmax Functions
- * - Basic math Functions
- *
- * The library has separate functions for operating on different weight and activation data
- * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
- * kernels are included in the function description. The implementation details are also
- * described in this paper [1].
- *
- * Supported Processors
- * -------
- * CMSIS-NN targets Cortex-M processors with typically three different implementations for each function. Each
- * targets a different group of processors.
- * - Processors without SIMD capability (e.g, Cortex-M0)
- * - Processors with DSP extention (e.g Cortex-M4)
- * - Processors with MVE extension (e.g Cortex-M55)
- * The right implementation is picked through feature flags and the user usually does not have to explicit set it.
- *
- * Function Classification
- * --------
- * The functions can be classified into two segments
- * - Legacy functions supporting ARM's internal symmetric quantization(8 bits).
- * - Functions that support TensorFlow Lite framework with symmetric quantization(8 bits).
- *
- * The legacy functions can be identified with their suffix of _q7 or _q15 and are no new development is done there.
- * The article in [2] describes in detail how to run a network using the legacy functions.
- *
- * The functions supporting TensorFlow Lite framework is identified by the _s8 suffix and can be invoked from TFL
- * micro. The functions are bit exact to TensorFlow Lite. Refer to the TensorFlow's documentation in [3] on how to run
- * a TensorFlow Lite model using optimized CMSIS-NN kernels.
- *
- * Block Diagram
- * --------
- * \image html CMSIS-NN-OVERVIEW.PNG
- *
- * Examples
- * --------
- *
- * The library ships with a number of examples which demonstrate how to use the library functions.
- *
- * Pre-processor Macros
- * ------------
- *
- * Each library project have different pre-processor macros.
- *
- * - ARM_MATH_DSP:
- *
- * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions(DSP extension).
- *
- * - ARM_MATH_MVEI:
- *
- * Define macro ARM_MATH_MVEI, If the silicon supports M-Profile Vector Extension.
- * - ARM_MATH_AUTOVECTORIZE
- * Used in conjucture with ARM_MATH_MVEI to let the compiler auto vectorize for the functions that uses inline
- * assembly. It does not affect functions that use C or intrinsics.
- * - ARM_MATH_BIG_ENDIAN:
- *
- * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. This is supported only for the legacy
- * functions i.e, functions targetted at TensorFlow Lite do not support big endianness. By default library builds for
- * little endian targets.
- *
- * - ARM_NN_TRUNCATE:
- *
- * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
- *
- *
- * Copyright Notice
- * ------------
- *
- * Copyright (C) 2010-2019 Arm Limited. All rights reserved.
- *
- * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
- *
- * [2] Converting a Neural Network for Arm Cortex-M with CMSIS-NN
- *
- https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page
- * [3] https://www.tensorflow.org/lite/microcontrollers/library
- *
- * [4] https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/NN#legacy-vs-tfl-micro-compliant-apis
- */
- /**
- * @defgroup groupNN Neural Network Functions
- * A collection of functions to perform basic operations for neural network layers. Functions with a _s8 suffix support
- * TensorFlow Lite framework.
- */
- #ifndef _ARM_NNFUNCTIONS_H
- #define _ARM_NNFUNCTIONS_H
- #include "arm_nn_math_types.h"
- #include "arm_nn_types.h"
- #define USE_INTRINSIC
- //#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
- #ifdef __cplusplus
- extern "C" {
- #endif
- /**
- * @brief Struct for specifying activation function types
- *
- */
- typedef enum
- {
- ARM_SIGMOID = 0,
- /**< Sigmoid activation function */
- ARM_TANH = 1,
- /**< Tanh activation function */
- } arm_nn_activation_type;
- /**
- * @defgroup NNConv Convolution Functions
- *
- * Collection of convolution, depthwise convolution functions and their variants.
- *
- * The convolution is implemented in 2 steps: im2col and GEMM
- *
- * im2col is a process of converting each patch of image data into
- * a column. After im2col, the convolution is computed as matrix-matrix
- * multiplication.
- *
- * To reduce the memory footprint, the im2col is performed partially.
- * Each iteration, only a few column (i.e., patches) are generated and
- * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
- *
- */
- /**
- * @brief s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
- cmsis-nn
- * to perform the convolution.
- *
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * Range of conv_params->input_offset : [-127, 128]
- * Range of conv_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- * spatial filter dimensions
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int8
- *
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- * <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- */
- arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief Get the required buffer size for arm_convolve_wrapper_s8
- *
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * Range of conv_params->input_offset : [-127, 128]
- * Range of conv_params->output_offset : [-128, 127]
- * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial
- * filter dimensions
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- *
- * @return The function returns required buffer size(bytes)
- *
- */
- int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_dims *input_dims,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims);
- /**
- * @brief s16 convolution layer wrapper function with the main purpose to call the optimal kernel available in
- cmsis-nn
- * to perform the convolution.
- *
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * conv_params->input_offset : Not used
- * conv_params->output_offset : Not used
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int16
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- * spatial filter dimensions
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Bias data pointer. Data type: int64
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int16
- *
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- * <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- */
- arm_status arm_convolve_wrapper_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q15_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int64_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q15_t *output_data);
- /**
- * @brief Get the required buffer size for arm_convolve_wrapper_s16
- *
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * conv_params->input_offset : Not used
- * conv_params->output_offset : Not used
- * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial
- * filter dimensions
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- *
- * @return The function returns required buffer size(bytes)
- *
- */
- int32_t arm_convolve_wrapper_s16_get_buffer_size(const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_dims *input_dims,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims);
- /**
- * @brief Basic s8 convolution function
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_s8_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * Range of conv_params->input_offset : [-127, 128]
- * Range of conv_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- * spatial filter dimensions
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Optional bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int8
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * 1. Supported framework: TensorFlow Lite micro
- * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
- *
- */
- arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief Get the required buffer size for s8 convolution function
- *
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
- * are the spatial filter dimensions
- * @return The function returns required buffer size(bytes)
- *
- */
- int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
- /**
- * @brief Basic s16 convolution function
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_s16_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * conv_params->input_offset : Not used
- * conv_params->output_offset : Not used
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int16
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- * spatial filter dimensions
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Optional bias data pointer. Data type: int64
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int16
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * 1. Supported framework: TensorFlow Lite micro
- * 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs.
- * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
- *
- */
- arm_status arm_convolve_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q15_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int64_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q15_t *output_data);
- /**
- * @brief Optimized s16 convolution function
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_fast_s16_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * conv_params->input_offset : Not used
- * conv_params->output_offset : Not used
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int16
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- * spatial filter dimensions. (filter_dims->w * filter_dims->h * input_dims->c) must not
- exceed 512
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Optional bias data pointer. Data type: int64
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int16
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * 1. Supported framework: TensorFlow Lite micro
- * 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs.
- * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
- * 4. Implementation supports kernel volumes (filter width * filter height * input channels) < 512.
- *
- */
- arm_status arm_convolve_fast_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q15_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int64_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q15_t *output_data);
- /**
- * @brief Get the required buffer size for s16 convolution function
- *
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
- * are the spatial filter dimensions
- * @return The function returns required buffer size(bytes)
- *
- */
- int32_t arm_convolve_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
- /**
- * @brief Get the required buffer size for fast s16 convolution function
- *
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
- * are the spatial filter dimensions
- * @return The function returns required buffer size(bytes)
- *
- */
- int32_t arm_convolve_fast_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
- /**
- * @brief Basic Q7 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_convolve_HWC_q7_basic(const q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Basic Q7 convolution function (non-square shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimension x
- * @param[in] dim_im_in_y input tensor dimension y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- */
- arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t *Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Basic Q15 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_convolve_HWC_q15_basic(const q15_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q15_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q15_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q15_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Fast Q7 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 4
- * ch_im_out is multiple of 2
- */
- arm_status arm_convolve_HWC_q7_fast(const q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Fast Q7 convolution function (non-sqaure shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimension x
- * @param[in] dim_im_in_y input tensor dimension y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 4
- * ch_im_out is multiple of 2
- */
- arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t *Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimension x
- * @param[in] dim_im_in_y input tensor dimension y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- * <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
- * and dim_kernel_y=1). It can be used for
- * second half of MobileNets after depthwise separable convolution.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 4
- * ch_im_out is multiple of 2
- */
- arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t *Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Fast s8 version for 1x1 convolution (non-square shape)
- *
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * Range of conv_params->input_offset : [-127, 128]
- * Range of conv_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Optional bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int8
- *
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- * <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- * @details
- * - Supported framework : TensorFlow Lite Micro
- * - The following constrains on the arguments apply
- * -# input_dims->c is a multiple of 4
- * -# conv_params->padding.w = conv_params->padding.h = 0
- * -# conv_params->stride.w = conv_params->stride.h = 1
- *
- */
- arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief Get the required buffer size for arm_convolve_1x1_s8_fast
- *
- * @param[in] input_dims Input (activation) dimensions
- * @return The function returns the required buffer size in bytes
- *
- */
- int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims);
- /**
- * @brief 1xn convolution
- *
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_1_x_n_s8_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * Range of conv_params->input_offset : [-127, 128]
- * Range of conv_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal
- * spatial filter dimension
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Optional bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int8
- *
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- * <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- * @details
- * - Supported framework : TensorFlow Lite Micro
- * - The following constrains on the arguments apply
- * -# input_dims->n equals 1
- * -# ouput_dims->w is a multiple of 4
- * -# Explicit constraints(since it is for 1xN convolution)
- * -## input_dims->h equals 1
- * -## output_dims->h equals 1
- * -## filter_dims->h equals 1
- *@todo Remove constraint on output_dims->w to make the function generic.
- *
- */
- arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief Get the required additional buffer size for 1xn convolution
- *
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the
- * horizontal spatial filter dimension
- * @return The function returns required buffer size(bytes)
- *
- */
- int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
- /**
- * @brief Q7 version of convolution for RGB image
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This kernel is written exclusively for convolution with ch_im_in
- * equals 3. This applies on the first layer of CNNs which has input
- * image with RGB format.
- */
- arm_status arm_convolve_HWC_q7_RGB(const q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Fast Q15 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 2
- * ch_im_out is multiple of 2
- * dim_im_out is a multiple of 2
- */
- arm_status arm_convolve_HWC_q15_fast(const q15_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q15_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q15_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q15_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Fast Q15 convolution function (non-sqaure shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimension x
- * @param[in] dim_im_in_y input tensor dimension y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * @details
- *
- * <b>Buffer size:</b>
- *
- * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
- *
- * bufferB size: 0
- *
- * <b>Input dimension constraints:</b>
- *
- * ch_im_in is multiple of 2
- *
- * ch_im_out is multipe of 2
- *
- */
- arm_status arm_convolve_HWC_q15_fast_nonsquare(const q15_t *Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q15_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q15_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q15_t *Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Q7 depthwise separable convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 2
- * ch_im_out is multiple of 2
- */
- arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Q7 depthwise separable convolution function (non-square shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimension x
- * @param[in] dim_im_in_y input tensor dimension y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding sizes x
- * @param[in] padding_y padding sizes y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 2
- * ch_im_out is multiple of 2
- */
- arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t *Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t *bufferA,
- q7_t *bufferB);
- /**
- * @brief Wrapper function to pick the right optimized s8 depthwise convolution function
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if required.
- * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
- * dw_conv_params->dilation is not used.
- * Range of dw_conv_params->input_offset : [-127, 128]
- * Range of dw_conv_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each
- * output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Batch argument N is not used and assumed to be 1.
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT]
- * @param[in, out] output_data Output data pointer. Data type: int8
- * @return The function returns
- * <code>ARM_MATH_SUCCESS</code> - Successful completion.
- *
- * @details
- * - Supported framework: TensorFlow Lite
- * - Picks one of the the following functions
- * -# arm_depthwise_conv_s8()
- * -# arm_depthwise_conv_3x3_s8() - Cortex-M CPUs with DSP extension only
- * -# arm_depthwise_conv_s8_opt()
- * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- * - Check details of arm_depthwise_conv_s8_opt() for potential data that can be accessed outside of the
- * boundary.
- */
- arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief Get size of additional buffer required by arm_depthwise_conv_wrapper_s8()
- *
- * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
- * dw_conv_params->dilation is not used.
- * Range of dw_conv_params->input_offset : [-127, 128]
- * Range of dw_conv_params->input_offset : [-128, 127]
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Batch argument N is not used and assumed to be 1.
- * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
- * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT]
- * @return Size of additional memory required for optimizations in bytes.
- *
- */
- int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_dims *input_dims,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims);
- /**
- * @brief Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * exists if additional memory is.
- * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
- * dw_conv_params->dilation is not used.
- * Range of dw_conv_params->input_offset : [-127, 128]
- * Range of dw_conv_params->input_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each
- * output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * Batch argument N is not used.
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[in, out] output_data Output data pointer. Data type: int8
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * - Supported framework: TensorFlow Lite
- * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- */
- arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief Basic s16 depthwise convolution function that doesn't have any constraints on the input dimensions.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * exists if additional memory is.
- * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
- * conv_params->input_offset : Not used
- * conv_params->output_offset : Not used
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each
- * output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * Batch argument N is not used.
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Bias data pointer. Data type: int64
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[in, out] output_data Output data pointer. Data type: int16
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * - Supported framework: TensorFlow Lite
- * - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs.
- */
- arm_status arm_depthwise_conv_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q15_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int64_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q15_t *output_data);
- /**
- * @brief Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on
- * the input arguments(documented below). Refer arm_depthwise_conv_s8() for function
- * argument details.
- *
- * @return The function returns one of the following
- * <code>ARM_MATH_SIZE_MISMATCH</code> - Unsupported dimension of tensors
- * <code>ARM_MATH_ARGUMENT_ERROR</code> - Unsupported pad size along the x axis
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @details
- * - Supported framework : TensorFlow Lite Micro
- * - The following constrains on the arguments apply
- * -# Number of input channel equals number of output channels
- * -# Filter height and width equals 3
- * -# Padding along x is either 0 or 1.
- *
- */
- arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel.
- * Refer arm_depthwise_conv_s8() for function argument details.
- *
- * @return The function returns one of the following
- * <code>ARM_MATH_SIZE_MISMATCH</code> - input channel != output channel or
- * ch_mult != 1
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out
- * for the following if MVE optimizations(Arm Helium Technology) are used.
- * - Output shift
- * - Output multiplier
- * - Output bias
- * - kernel
- * @details
- * - Supported framework: TensorFlow Lite
- * - The following constrains on the arguments apply
- * -# Number of input channel equals number of output channels or ch_mult equals 1
- * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- * - Reccomended when number of channels is 4 or greater.
- *
- */
- arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief Get the required buffer size for optimized s8 depthwise convolution
- * function with constraint that in_channel equals out_channel.
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [1, H, W, C_IN]
- * Batch argument N is not used.
- * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
- * @return The function returns required buffer size in bytes
- *
- */
- int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
- /**
- * @defgroup FC Fully-connected Layer Functions
- *
- * Collection of fully-connected and matrix multiplication functions.
- *
- * Fully-connected layer is basically a matrix-vector multiplication
- * with bias. The matrix is the weights and the input/output vectors
- * are the activation values. Supported {weight, activation} precisions
- * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
- *
- * Here we have two types of kernel functions. The basic function
- * implements the function using regular GEMV approach. The opt functions
- * operates with weights in interleaved formats.
- *
- */
- /**
- *@brief Q7 basic fully-connected layer function
- *@param[in] pV pointer to input vector
- *@param[in] pM pointer to matrix weights
- *@param[in] dim_vec length of the vector
- *@param[in] num_of_rows number of rows in weight matrix
- *@param[in] bias_shift amount of left-shift for bias
- *@param[in] out_shift amount of right-shift for output
- *@param[in] bias pointer to bias
- *@param[in,out] pOut pointer to output vector
- *@param[in,out] vec_buffer pointer to buffer space for input
- *@return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_q7(const q7_t *pV,
- const q7_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q7_t *pOut,
- q15_t *vec_buffer);
- /**
- * @brief Basic s8 Fully Connected function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] fc_params Fully Connected layer parameters.
- * Range of fc_params->input_offset : [-127, 128]
- * fc_params->filter_offset : 0
- * Range of fc_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-tensor quantization info.
- * It contains the multiplier and shift values to be applied to the output tensor.
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * Input dimension is taken as Nx(H * W * C_IN)
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C]
- * N : accumulation depth and equals (H * W * C_IN) from input_dims
- * C : output depth and equals C_OUT in output_dims
- * H & W : Not used
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * N, H, W : Not used
- * @param[in] bias_data Bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT]
- * N : Batches
- * C_OUT : Output depth
- * H & W : Not used.
- * @param[in, out] output_data Output data pointer. Data type: int8
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * - Supported framework: TensorFlow Lite
- * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- */
- arm_status arm_fully_connected_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_fc_params *fc_params,
- const cmsis_nn_per_tensor_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief Get the required buffer size for S8 basic fully-connected and
- * matrix multiplication layer function for TF Lite
- * @param[in] filter_dims dimension of filter
- * @return The function returns required buffer size in bytes
- *
- */
- int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims);
- /**
- * @brief Basic s16 Fully Connected function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] fc_params Fully Connected layer parameters.
- * fc_params->input_offset : 0
- * fc_params->filter_offset : 0
- * fc_params->output_offset : 0
- * @param[in] quant_params Per-tensor quantization info.
- * It contains the multiplier and shift values to be applied to the output tensor.
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * Input dimension is taken as Nx(H * W * C_IN)
- * @param[in] input_data Input (activation) data pointer. Data type: int16
- * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C]
- * N : accumulation depth and equals (H * W * C_IN) from input_dims
- * C : output depth and equals C_OUT in output_dims
- * H & W : Not used
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * N, H, W : Not used
- * @param[in] bias_data Bias data pointer. Data type: int64
- * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT]
- * N : Batches
- * C_OUT : Output depth
- * H & W : Not used.
- * @param[in, out] output_data Output data pointer. Data type: int16
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * - Supported framework: TensorFlow Lite
- * - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs.
- */
- arm_status arm_fully_connected_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_fc_params *fc_params,
- const cmsis_nn_per_tensor_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q15_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int64_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q15_t *output_data);
- /**
- * @brief Get the required buffer size for S16 basic fully-connected and
- * matrix multiplication layer function for TF Lite
- * @param[in] filter_dims dimension of filter
- * @return The function returns required buffer size in bytes
- *
- */
- int32_t arm_fully_connected_s16_get_buffer_size(const cmsis_nn_dims *filter_dims);
- /**
- * @brief Q7 opt fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_q7_opt(const q7_t *pV,
- const q7_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q7_t *pOut,
- q15_t *vec_buffer);
- /**
- * @brief Q15 basic fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_q15(const q15_t *pV,
- const q15_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q15_t *bias,
- q15_t *pOut,
- q15_t *vec_buffer);
- /**
- * @brief Q15 opt fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_q15_opt(const q15_t *pV,
- const q15_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q15_t *bias,
- q15_t *pOut,
- q15_t *vec_buffer);
- /**
- * @brief Mixed Q15-Q7 fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t *pV,
- const q7_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q15_t *pOut,
- q15_t *vec_buffer);
- /**
- * @brief Mixed Q15-Q7 opt fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t *pV,
- const q7_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q15_t *pOut,
- q15_t *vec_buffer);
- /**
- * @brief Matrix-Multiplication Kernels for Convolution
- *
- * These functions are used within convolution layer functions for
- * matrix multiplication.
- *
- * The implementation is similar to CMSIS-DSP arm_mat_mult functions
- * with one Q7 and one Q15 operands. The Q15 operand is the im2col
- * output which is always with 2 columns.
- *
- */
- /**
- * @brief Matrix-multiplication function for convolution
- * @param[in] pA pointer to operand A
- * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
- * @param[in] ch_im_out numRow of A
- * @param[in] numCol_A numCol of A
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias the bias
- * @param[in,out] pOut pointer to output
- * @return The function returns the incremented output pointer
- */
- q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t *pA,
- const q15_t *pInBuffer,
- const uint16_t ch_im_out,
- const uint16_t numCol_A,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q7_t *pOut);
- #ifdef __cplusplus
- }
- #endif
- /*
- * Other functions
- * These layers are typically not timing critical
- * Basic implementation is supported here
- */
- #ifdef __cplusplus
- extern "C" {
- #endif
- /**
- * @defgroup BasicMath Basic math functions
- *
- * Elementwise add and multiplication functions.
- *
- */
- /**
- * @brief s8 elementwise add of two vectors
- * @param[in] input_1_vect pointer to input vector 1
- * @param[in] input_2_vect pointer to input vector 2
- * @param[in] input_1_offset offset for input 1. Range: -127 to 128
- * @param[in] input_1_mult multiplier for input 1
- * @param[in] input_1_shift shift for input 1
- * @param[in] input_2_offset offset for input 2. Range: -127 to 128
- * @param[in] input_2_mult multiplier for input 2
- * @param[in] input_2_shift shift for input 2
- * @param[in] left_shift input left shift
- * @param[in,out] output pointer to output vector
- * @param[in] out_offset output offset. Range: -128 to 127
- * @param[in] out_mult output multiplier
- * @param[in] out_shift output shift
- * @param[in] out_activation_min minimum value to clamp output to. Min: -128
- * @param[in] out_activation_max maximum value to clamp output to. Max: 127
- * @param[in] block_size number of samples
- * @return The function returns ARM_MATH_SUCCESS
- */
- arm_status arm_elementwise_add_s8(const int8_t *input_1_vect,
- const int8_t *input_2_vect,
- const int32_t input_1_offset,
- const int32_t input_1_mult,
- const int32_t input_1_shift,
- const int32_t input_2_offset,
- const int32_t input_2_mult,
- const int32_t input_2_shift,
- const int32_t left_shift,
- int8_t *output,
- const int32_t out_offset,
- const int32_t out_mult,
- const int32_t out_shift,
- const int32_t out_activation_min,
- const int32_t out_activation_max,
- const int32_t block_size);
- /**
- * @brief s16 elementwise add of two vectors
- * @param[in] input_1_vect pointer to input vector 1
- * @param[in] input_2_vect pointer to input vector 2
- * @param[in] input_1_offset offset for input 1. Not used.
- * @param[in] input_1_mult multiplier for input 1
- * @param[in] input_1_shift shift for input 1
- * @param[in] input_2_offset offset for input 2. Not used.
- * @param[in] input_2_mult multiplier for input 2
- * @param[in] input_2_shift shift for input 2
- * @param[in] left_shift input left shift
- * @param[in,out] output pointer to output vector
- * @param[in] out_offset output offset. Not used.
- * @param[in] out_mult output multiplier
- * @param[in] out_shift output shift
- * @param[in] out_activation_min minimum value to clamp output to. Min: -32768
- * @param[in] out_activation_max maximum value to clamp output to. Max: 32767
- * @param[in] block_size number of samples
- * @return The function returns ARM_MATH_SUCCESS
- */
- arm_status arm_elementwise_add_s16(const int16_t *input_1_vect,
- const int16_t *input_2_vect,
- const int32_t input_1_offset,
- const int32_t input_1_mult,
- const int32_t input_1_shift,
- const int32_t input_2_offset,
- const int32_t input_2_mult,
- const int32_t input_2_shift,
- const int32_t left_shift,
- int16_t *output,
- const int32_t out_offset,
- const int32_t out_mult,
- const int32_t out_shift,
- const int32_t out_activation_min,
- const int32_t out_activation_max,
- const int32_t block_size);
- /**
- * @brief s8 elementwise multiplication
- * @param[in] input_1_vect pointer to input vector 1
- * @param[in] input_2_vect pointer to input vector 2
- * @param[in] input_1_offset offset for input 1. Range: -127 to 128
- * @param[in] input_2_offset offset for input 2. Range: -127 to 128
- * @param[in,out] output pointer to output vector
- * @param[in] out_offset output offset. Range: -128 to 127
- * @param[in] out_mult output multiplier
- * @param[in] out_shift output shift
- * @param[in] out_activation_min minimum value to clamp output to. Min: -128
- * @param[in] out_activation_max maximum value to clamp output to. Max: 127
- * @param[in] block_size number of samples
- * @return The function returns ARM_MATH_SUCCESS
- *
- * @details Supported framework: TensorFlow Lite micro
- */
- arm_status arm_elementwise_mul_s8(const int8_t *input_1_vect,
- const int8_t *input_2_vect,
- const int32_t input_1_offset,
- const int32_t input_2_offset,
- int8_t *output,
- const int32_t out_offset,
- const int32_t out_mult,
- const int32_t out_shift,
- const int32_t out_activation_min,
- const int32_t out_activation_max,
- const int32_t block_size);
- /**
- * @brief s16 elementwise multiplication
- * @param[in] input_1_vect pointer to input vector 1
- * @param[in] input_2_vect pointer to input vector 2
- * @param[in] input_1_offset offset for input 1. Not used.
- * @param[in] input_2_offset offset for input 2. Not used.
- * @param[in,out] output pointer to output vector
- * @param[in] out_offset output offset. Not used.
- * @param[in] out_mult output multiplier
- * @param[in] out_shift output shift
- * @param[in] out_activation_min minimum value to clamp output to. Min: -32768
- * @param[in] out_activation_max maximum value to clamp output to. Max: 32767
- * @param[in] block_size number of samples
- * @return The function returns ARM_MATH_SUCCESS
- *
- * @details Supported framework: TensorFlow Lite micro
- */
- arm_status arm_elementwise_mul_s16(const int16_t *input_1_vect,
- const int16_t *input_2_vect,
- const int32_t input_1_offset,
- const int32_t input_2_offset,
- int16_t *output,
- const int32_t out_offset,
- const int32_t out_mult,
- const int32_t out_shift,
- const int32_t out_activation_min,
- const int32_t out_activation_max,
- const int32_t block_size);
- /**
- * @defgroup Acti Activation Functions
- *
- * Perform activation layers, including ReLU (Rectified Linear Unit),
- * sigmoid and tanh
- *
- */
- /**
- * @brief Q7 RELU function
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @return none.
- */
- void arm_relu_q7(q7_t *data, uint16_t size);
- /**
- * @brief s8 ReLU6 function
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- */
- void arm_relu6_s8(q7_t *data, uint16_t size);
- /**
- * @brief Q15 RELU function
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @return none.
- */
- void arm_relu_q15(q15_t *data, uint16_t size);
- /**
- * @brief Q7 neural network activation function using direct table look-up
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
- * @param[in] type type of activation functions
- * @return none.
- */
- void arm_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
- /**
- * @brief Q15 neural network activation function using direct table look-up
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
- * @param[in] type type of activation functions
- * @return none.
- *
- * @details
- *
- * This is the direct table look-up approach.
- *
- * Assume here the integer part of the fixed-point is <= 3.
- * More than 3 just not making much sense, makes no difference with
- * saturation followed by any of these activation functions.
- */
- void arm_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
- /**
- * @defgroup Pooling Pooling Functions
- *
- * Perform pooling functions, including max pooling and average pooling
- *
- */
- /**
- * @brief Q7 max pooling function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] Im_out pointer to output tensor
- * @return none.
- *
- */
- void arm_maxpool_q7_HWC(q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const uint16_t dim_im_out,
- q7_t *bufferA,
- q7_t *Im_out);
- /**
- * @brief Q7 average pooling function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] Im_out pointer to output tensor
- * @return none.
- *
- */
- void arm_avepool_q7_HWC(q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const uint16_t dim_im_out,
- q7_t *bufferA,
- q7_t *Im_out);
- /**
- * @brief s8 average pooling function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] pool_params Pooling parameters
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Argument 'N' is not used.
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
- * Argument N and C are not used.
- * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
- * Argument N is not used.
- * C_OUT equals C_IN.
- * @param[in, out] output_data Output data pointer. Data type: int8
- * @return The function returns
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @details
- * - Supported Framework: TensorFlow Lite
- *
- */
- arm_status arm_avgpool_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_pool_params *pool_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief Get the required buffer size for S8 average pooling function
- * @param[in] dim_dst_width output tensor dimension
- * @param[in] ch_src number of input tensor channels
- * @return The function returns required buffer size in bytes
- *
- */
- int32_t arm_avgpool_s8_get_buffer_size(const int dim_dst_width, const int ch_src);
- /**
- * @brief s16 average pooling function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] pool_params Pooling parameters
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Argument 'N' is not used.
- * @param[in] input_data Input (activation) data pointer. Data type: int16
- * @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
- * Argument N and C are not used.
- * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
- * Argument N is not used.
- * C_OUT equals C_IN.
- * @param[in, out] output_data Output data pointer. Data type: int16
- * @return The function returns
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @details
- * - Supported Framework: TensorFlow Lite
- *
- */
- arm_status arm_avgpool_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_pool_params *pool_params,
- const cmsis_nn_dims *input_dims,
- const int16_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims,
- int16_t *output_data);
- /**
- * @brief Get the required buffer size for S16 average pooling function
- * @param[in] dim_dst_width output tensor dimension
- * @param[in] ch_src number of input tensor channels
- * @return The function returns required buffer size in bytes
- *
- */
- int32_t arm_avgpool_s16_get_buffer_size(const int dim_dst_width, const int ch_src);
- /**
- * @brief s8 max pooling function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] pool_params Pooling parameters
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Argument 'N' is not used.
- * @param[in] input_data Input (activation) data pointer. The input tensor must not
- * overlap with the output tensor. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
- * Argument N and C are not used.
- * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
- * Argument N is not used.
- * C_OUT equals C_IN.
- * @param[in, out] output_data Output data pointer. Data type: int8
- * @return The function returns
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @details
- * - Supported Framework: TensorFlow Lite
- *
- */
- arm_status arm_max_pool_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_pool_params *pool_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief s16 max pooling function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] pool_params Pooling parameters
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Argument 'N' is not used.
- * @param[in] src Input (activation) data pointer. The input tensor must not
- * overlap with the output tensor. Data type: int16
- * @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
- * Argument N and C are not used.
- * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
- * Argument N is not used.
- * C_OUT equals C_IN.
- * @param[in, out] dst Output data pointer. Data type: int16
- * @return The function returns
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @details
- * - Supported Framework: TensorFlow Lite
- *
- */
- arm_status arm_max_pool_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_pool_params *pool_params,
- const cmsis_nn_dims *input_dims,
- const int16_t *src,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims,
- int16_t *dst);
- /**
- * @defgroup Softmax Softmax Functions
- *
- * EXP(2) based softmax functions.
- *
- */
- /**
- * @brief Q7 softmax function
- * @param[in] vec_in pointer to input vector
- * @param[in] dim_vec input vector dimension
- * @param[out] p_out pointer to output vector
- *
- * @note This function is an optimized version which is not bit-accurate with
- * TensorFlow Lite's kernel
- *
- */
- void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out);
- /**
- * @brief Q7 softmax function with batch parameter
- * @param[in] vec_in pointer to input vector
- * @param[in] nb_batches number of batches
- * @param[in] dim_vec input vector dimension
- * @param[out] p_out pointer to output vector
- * @return none.
- *
- * @note This function is an optimized version which is not bit-accurate with
- * TensorFlow Lite's kernel
- *
- */
- void arm_softmax_with_batch_q7(const q7_t *vec_in, const uint16_t nb_batches, const uint16_t dim_vec, q7_t *p_out);
- /**
- * @brief Q15 softmax function
- * @param[in] vec_in pointer to input vector
- * @param[in] dim_vec input vector dimension
- * @param[out] p_out pointer to output vector
- * @return none.
- *
- * @note This function is an optimized version which is not bit-accurate with
- * TensorFlow Lite's kernel
- *
- */
- void arm_softmax_q15(const q15_t *vec_in, const uint16_t dim_vec, q15_t *p_out);
- /**
- * @brief S8 softmax function
- * @param[in] input Pointer to the input tensor
- * @param[in] num_rows Number of rows in the input tensor
- * @param[in] row_size Number of elements in each input row
- * @param[in] mult Input quantization multiplier
- * @param[in] shift Input quantization shift within the range [0, 31]
- * @param[in] diff_min Minimum difference with max in row. Used to check if
- * the quantized exponential operation can be performed
- * @param[out] output Pointer to the output tensor
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
- void arm_softmax_s8(const int8_t *input,
- const int32_t num_rows,
- const int32_t row_size,
- const int32_t mult,
- const int32_t shift,
- const int32_t diff_min,
- int8_t *output);
- /**
- * @brief S8 to s16 softmax function
- * @param[in] input Pointer to the input tensor
- * @param[in] num_rows Number of rows in the input tensor
- * @param[in] row_size Number of elements in each input row
- * @param[in] mult Input quantization multiplier
- * @param[in] shift Input quantization shift within the range [0, 31]
- * @param[in] diff_min Minimum difference with max in row. Used to check if
- * the quantized exponential operation can be performed
- * @param[out] output Pointer to the output tensor
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
- void arm_softmax_s8_s16(const int8_t *input,
- const int32_t num_rows,
- const int32_t row_size,
- const int32_t mult,
- const int32_t shift,
- const int32_t diff_min,
- int16_t *output);
- /**
- * @brief S16 softmax function
- * @param[in] input Pointer to the input tensor
- * @param[in] num_rows Number of rows in the input tensor
- * @param[in] row_size Number of elements in each input row
- * @param[in] mult Input quantization multiplier
- * @param[in] shift Input quantization shift within the range [0, 31]
- * @param[in] softmax_params Softmax s16 layer parameters with two pointers to LUTs speficied below.
- * For indexing the high 9 bits are used and 7 remaining for interpolation.
- * That means 512 entries for the 9-bit indexing and 1 extra for interpolation, i.e. 513
- * values for each LUT.
- * - Lookup table for exp(x), where x uniform distributed between [-10.0 , 0.0]
- * - Lookup table for 1 / (1 + x), where x uniform distributed between [0.0 , 1.0]
- * @param[out] output Pointer to the output tensor
- * @return The function returns
- * <code>ARM_MATH_ARGUMENT_ERROR</code> if LUTs are NULL
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
- arm_status arm_softmax_s16(const int16_t *input,
- const int32_t num_rows,
- const int32_t row_size,
- const int32_t mult,
- const int32_t shift,
- const cmsis_nn_softmax_lut_s16 *softmax_params,
- int16_t *output);
- /**
- * @brief U8 softmax function
- * @param[in] input Pointer to the input tensor
- * @param[in] num_rows Number of rows in the input tensor
- * @param[in] row_size Number of elements in each input row
- * @param[in] mult Input quantization multiplier
- * @param[in] shift Input quantization shift within the range [0, 31]
- * @param[in] diff_min Minimum difference with max in row. Used to check if
- * the quantized exponential operation can be performed
- * @param[out] output Pointer to the output tensor
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
- void arm_softmax_u8(const uint8_t *input,
- const int32_t num_rows,
- const int32_t row_size,
- const int32_t mult,
- const int32_t shift,
- const int32_t diff_min,
- uint8_t *output);
- /**
- * @brief uint8 depthwise convolution function with asymmetric quantization
- * Unless specified otherwise, arguments are mandatory.
- *
- * @param[in] input Pointer to input tensor
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_ch Channels in input tensor
- * @param[in] kernel Pointer to kernel weights
- * @param[in] kernel_x Width of kernel
- * @param[in] kernel_y Height of kernel
- * @param[in] ch_mult Number of channel multiplier
- * @param[in] pad_x Padding sizes x
- * @param[in] pad_y Padding sizes y
- * @param[in] stride_x stride along the width
- * @param[in] stride_y stride along the height
- * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
- * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
- * @param[in] bias Pointer to optional bias values. If no bias is
- * availble, NULL is expected
- * @param[in] input_offset Input tensor zero offset
- * @param[in] filter_offset Kernel tensor zero offset
- * @param[in] output_offset Output tensor zero offset
- * @param[in,out] output Pointer to output tensor
- * @param[in] output_x Width of output tensor
- * @param[in] output_y Height of output tensor
- * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
- * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
- * @param[in] out_shift Amount of right-shift for output
- * @param[in] out_mult Output multiplier for requantization
- * @return The function returns the following
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- */
- arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_ch,
- const uint8_t *kernel,
- const uint16_t kernel_x,
- const uint16_t kernel_y,
- const int16_t ch_mult,
- const int16_t pad_x,
- const int16_t pad_y,
- const int16_t stride_x,
- const int16_t stride_y,
- const int16_t dilation_x,
- const int16_t dilation_y,
- const int32_t *bias,
- const int32_t input_offset,
- const int32_t filter_offset,
- const int32_t output_offset,
- uint8_t *output,
- const uint16_t output_x,
- const uint16_t output_y,
- const int32_t output_activation_min,
- const int32_t output_activation_max,
- const int32_t out_shift,
- const int32_t out_mult);
- /**
- * @defgroup Reshape Reshape Functions
- *
- */
- /**
- * @brief Reshape a s8 vector into another with different shape
- * @param[in] input points to the s8 input vector
- * @param[out] output points to the s8 output vector
- * @param[in] total_size total size of the input and output vectors in bytes
- *
- * @note The output is expected to be in a memory area that does not overlap with the input's
- *
- */
- void arm_reshape_s8(const int8_t *input, int8_t *output, const uint32_t total_size);
- /**
- * @defgroup Concatenation Concatenation Functions
- *
- */
- /**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the X axis
- * This function should be called for each input tensor to concatenate. The argument offset_x
- * will be used to store the input tensor in the correct position in the output tensor
- *
- * i.e. offset_x = 0
- * for(i = 0 i < num_input_tensors; ++i)
- * {
- * arm_concatenation_s8_x(&input[i], ..., &output, ..., ..., offset_x)
- * offset_x += input_x[i]
- * }
- *
- * This function assumes that the output tensor has:
- * -# The same height of the input tensor
- * -# The same number of channels of the input tensor
- * -# The same batch size of the input tensor
- *
- * Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- * does not involve any arithmetic operation
- *
- * @param[in] input Pointer to input tensor. Input tensor must not overlap with the output tensor.
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_z Channels in input tensor
- * @param[in] input_w Batch size in input tensor
- * @param[out] output Pointer to output tensor. Expected to be at least
- * (input_x * input_y * input_z * input_w) + offset_x
- * bytes.
- * @param[in] output_x Width of output tensor
- * @param[in] offset_x The offset (in number of elements) on the X axis to start concatenating the input tensor
- * It is user responsibility to provide the correct value
- *
- * <b> Input constraints</b>
- * offset_x is less than output_x
- *
- */
- void arm_concatenation_s8_x(const int8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_z,
- const uint16_t input_w,
- int8_t *output,
- const uint16_t output_x,
- const uint32_t offset_x);
- /**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Y axis
- * This function should be called for each input tensor to concatenate. The argument offset_y
- * will be used to store the input tensor in the correct position in the output tensor
- *
- * i.e. offset_y = 0
- * for(i = 0 i < num_input_tensors; ++i)
- * {
- * arm_concatenation_s8_y(&input[i], ..., &output, ..., ..., offset_y)
- * offset_y += input_y[i]
- * }
- *
- * This function assumes that the output tensor has:
- * -# The same width of the input tensor
- * -# The same number of channels of the input tensor
- * -# The same batch size of the input tensor
- *
- * Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- * does not involve any arithmetic operation
- *
- * @param[in] input Pointer to input tensor. Input tensor must not overlap with the output tensor.
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_z Channels in input tensor
- * @param[in] input_w Batch size in input tensor
- * @param[out] output Pointer to output tensor. Expected to be at least
- * (input_z * input_w * input_x * input_y) + offset_y
- * bytes.
- * @param[in] output_y Height of output tensor
- * @param[in] offset_y The offset on the Y axis to start concatenating the input tensor
- * It is user responsibility to provide the correct value
- *
- * <b> Input constraints</b>
- * offset_y is less than output_y
- *
- */
- void arm_concatenation_s8_y(const int8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_z,
- const uint16_t input_w,
- int8_t *output,
- const uint16_t output_y,
- const uint32_t offset_y);
- /**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Z axis
- * This function should be called for each input tensor to concatenate. The argument offset_z
- * will be used to store the input tensor in the correct position in the output tensor
- *
- * i.e. offset_z = 0
- * for(i = 0 i < num_input_tensors; ++i)
- * {
- * arm_concatenation_s8_z(&input[i], ..., &output, ..., ..., offset_z)
- * offset_z += input_z[i]
- * }
- *
- * This function assumes that the output tensor has:
- * -# The same width of the input tensor
- * -# The same height of the input tensor
- * -# The same batch size of the input tensor
- *
- * Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- * does not involve any arithmetic operation
- *
- * @param[in] input Pointer to input tensor. Input tensor must not overlap with output tensor.
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_z Channels in input tensor
- * @param[in] input_w Batch size in input tensor
- * @param[out] output Pointer to output tensor. Expected to be at least
- * (input_x * input_y * input_z * input_w) + offset_z
- * bytes.
- * @param[in] output_z Channels in output tensor
- * @param[in] offset_z The offset on the Z axis to start concatenating the input tensor
- * It is user responsibility to provide the correct value
- *
- * <b> Input constraints</b>
- * offset_z is less than output_z
- *
- */
- void arm_concatenation_s8_z(const int8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_z,
- const uint16_t input_w,
- int8_t *output,
- const uint16_t output_z,
- const uint32_t offset_z);
- /**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the W axis (Batch size)
- * This function should be called for each input tensor to concatenate. The argument offset_w
- * will be used to store the input tensor in the correct position in the output tensor
- *
- * i.e. offset_w = 0
- * for(i = 0 i < num_input_tensors; ++i)
- * {
- * arm_concatenation_s8_w(&input[i], ..., &output, ..., ..., offset_w)
- * offset_w += input_w[i]
- * }
- *
- * This function assumes that the output tensor has:
- * -# The same width of the input tensor
- * -# The same height of the input tensor
- * -# The same number o channels of the input tensor
- *
- * Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- * does not involve any arithmetic operation
- *
- * @param[in] input Pointer to input tensor
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_z Channels in input tensor
- * @param[in] input_w Batch size in input tensor
- * @param[out] output Pointer to output tensor. Expected to be at least
- * input_x * input_y * input_z * input_w
- * bytes.
- * @param[in] offset_w The offset on the W axis to start concatenating the input tensor
- * It is user responsibility to provide the correct value
- *
- */
- void arm_concatenation_s8_w(const int8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_z,
- const uint16_t input_w,
- int8_t *output,
- const uint32_t offset_w);
- /**
- * @defgroup SVDF SVDF Layer Functions
- *
- */
- /**
- * @brief s8 SVDF function with 8 bit state tensor and 8 bit time weights
- *
- * @param[in] input_ctx Temporary scratch buffer
- * @param[in] output_ctx Temporary output scratch buffer
- * @param[in] svdf_params SVDF Parameters
- * Range of svdf_params->input_offset : [-128, 127]
- * Range of svdf_params->output_offset : [-128, 127]
- * @param[in] input_quant_params Input quantization parameters
- * @param[in] output_quant_params Output quantization parameters
- * @param[in] input_dims Input tensor dimensions
- * @param[in] input_data Pointer to input tensor
- * @param[in] state_dims State tensor dimensions
- * @param[in] state_data Pointer to state tensor
- * @param[in] weights_feature_dims Weights (feature) tensor dimensions
- * @param[in] weights_feature_data Pointer to the weights (feature) tensor
- * @param[in] weights_time_dims Weights (time) tensor dimensions
- * @param[in] weights_time_data Pointer to the weights (time) tensor
- * @param[in] bias_dims Bias tensor dimensions
- * @param[in] bias_data Pointer to bias tensor
- * @param[in] output_dims Output tensor dimensions
- * @param[out] output_data Pointer to the output tensor
- *
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * 1. Supported framework: TensorFlow Lite micro
- * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- *
- */
- arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx,
- const cmsis_nn_context *output_ctx,
- const cmsis_nn_svdf_params *svdf_params,
- const cmsis_nn_per_tensor_quant_params *input_quant_params,
- const cmsis_nn_per_tensor_quant_params *output_quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *state_dims,
- q7_t *state_data,
- const cmsis_nn_dims *weights_feature_dims,
- const q7_t *weights_feature_data,
- const cmsis_nn_dims *weights_time_dims,
- const q7_t *weights_time_data,
- const cmsis_nn_dims *bias_dims,
- const q31_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- /**
- * @brief s8 SVDF function with 16 bit state tensor and 16 bit time weights
- *
- * @param[in] input_ctx Temporary scratch buffer
- * @param[in] output_ctx Temporary output scratch buffer
- * @param[in] svdf_params SVDF Parameters
- * Range of svdf_params->input_offset : [-128, 127]
- * Range of svdf_params->output_offset : [-128, 127]
- * @param[in] input_quant_params Input quantization parameters
- * @param[in] output_quant_params Output quantization parameters
- * @param[in] input_dims Input tensor dimensions
- * @param[in] input_data Pointer to input tensor
- * @param[in] state_dims State tensor dimensions
- * @param[in] state_data Pointer to state tensor
- * @param[in] weights_feature_dims Weights (feature) tensor dimensions
- * @param[in] weights_feature_data Pointer to the weights (feature) tensor
- * @param[in] weights_time_dims Weights (time) tensor dimensions
- * @param[in] weights_time_data Pointer to the weights (time) tensor
- * @param[in] bias_dims Bias tensor dimensions
- * @param[in] bias_data Pointer to bias tensor
- * @param[in] output_dims Output tensor dimensions
- * @param[out] output_data Pointer to the output tensor
- *
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * 1. Supported framework: TensorFlow Lite micro
- * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- *
- */
- arm_status arm_svdf_state_s16_s8(const cmsis_nn_context *input_ctx,
- const cmsis_nn_context *output_ctx,
- const cmsis_nn_svdf_params *svdf_params,
- const cmsis_nn_per_tensor_quant_params *input_quant_params,
- const cmsis_nn_per_tensor_quant_params *output_quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *state_dims,
- q15_t *state_data,
- const cmsis_nn_dims *weights_feature_dims,
- const q7_t *weights_feature_data,
- const cmsis_nn_dims *weights_time_dims,
- const q15_t *weights_time_data,
- const cmsis_nn_dims *bias_dims,
- const q31_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
- #ifdef __cplusplus
- }
- #endif
- #endif
|