| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186 |
- /*
- * Copyright (C) 2010-2022 Arm Limited or its affiliates.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /* ----------------------------------------------------------------------
- * Project: CMSIS NN Library
- * Title: arm_nnsupportfunctions.h
- * Description: Public header file of support functions for CMSIS NN Library
- *
- * $Date: 19. April 2022
- * $Revision: V.7.0.1
- *
- * Target Processor: Cortex-M CPUs
- * -------------------------------------------------------------------- */
- #ifndef _ARM_NNSUPPORTFUNCTIONS_H_
- #define _ARM_NNSUPPORTFUNCTIONS_H_
- #include "arm_nn_math_types.h"
- #include "arm_nn_types.h"
- #include <stdbool.h>
- #ifdef __cplusplus
- extern "C" {
- #endif
- #define LEFT_SHIFT(_shift) (_shift > 0 ? _shift : 0)
- #define RIGHT_SHIFT(_shift) (_shift > 0 ? 0 : -_shift)
- #define MASK_IF_ZERO(x) (x) == 0 ? ~0 : 0
- #define MASK_IF_NON_ZERO(x) (x) != 0 ? ~0 : 0
- #define SELECT_USING_MASK(mask, a, b) ((mask) & (a)) ^ (~(mask) & (b))
- #define MAX(A, B) ((A) > (B) ? (A) : (B))
- #define MIN(A, B) ((A) < (B) ? (A) : (B))
- #define CLAMP(x, h, l) MAX(MIN((x), (h)), (l))
- #define REDUCE_MULTIPLIER(_mult) ((_mult < 0x7FFF0000) ? ((_mult + (1 << 15)) >> 16) : 0x7FFF)
- /**
- * @brief definition to pack four 8 bit values.
- */
- #define PACK_Q7x4_32x1(v0, v1, v2, v3) \
- ((((int32_t)(v0) << 0) & (int32_t)0x000000FF) | (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
- (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | (((int32_t)(v3) << 24) & (int32_t)0xFF000000))
- /**
- * @brief Union for SIMD access of q31/q15/q7 types
- */
- union arm_nnword
- {
- q31_t word;
- /**< q31 type */
- q15_t half_words[2];
- /**< q15 type */
- q7_t bytes[4];
- /**< q7 type */
- };
- /**
- * @brief Union for data type long long
- */
- struct arm_nn_double
- {
- uint32_t low;
- int32_t high;
- };
- union arm_nn_long_long
- {
- int64_t long_long;
- struct arm_nn_double word;
- };
- /**
- * @defgroup nndata_convert Neural Network Data Conversion Functions
- *
- * Perform data type conversion in-between neural network operations
- *
- */
- /**
- * @brief Converts the elements of the q7 vector to q15 vector without left-shift
- * @param[in] *pSrc points to the q7 input vector
- * @param[out] *pDst points to the q15 output vector
- * @param[in] blockSize length of the input vector
- *
- */
- void arm_q7_to_q15_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize);
- /**
- * @brief Non-saturating addition of elements of a q7 vector
- * @param[in] *input Pointer to the q7 input vector
- * @param[out] *output Pointer to the q31 output variable.
- * @param[in] block_size length of the input vector
- * \par Description:
- *
- * 2^24 samples can be added without saturating the result.
- *
- * The equation used for the conversion process is:
- *
- * <pre>
- * sum = input[0] + input[1] + .. + input[block_size -1]
- * </pre>
- *
- * */
- void arm_nn_add_q7(const q7_t *input, q31_t *output, uint32_t block_size);
- /**
- * @brief Converts the elements of the q7 vector to reordered q15 vector without left-shift
- * @param[in] *pSrc points to the q7 input vector
- * @param[out] *pDst points to the q15 output vector
- * @param[in] blockSize length of the input vector
- * @return none.
- *
- */
- void arm_q7_to_q15_reordered_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize);
- /**
- * @brief Converts the elements from a q7 vector to a q15 vector with an added offset
- * @param[in] src pointer to the q7 input vector
- * @param[out] dst pointer to the q15 output vector
- * @param[in] block_size length of the input vector
- * @param[in] offset q7 offset to be added to each input vector element.
- *
- * \par Description:
- *
- * The equation used for the conversion process is:
- *
- * <pre>
- * dst[n] = (q15_t) src[n] + offset; 0 <= n < block_size.
- * </pre>
- *
- */
- void arm_q7_to_q15_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset);
- /**
- * @brief Converts the elements of the q7 vector to reordered q15 vector with an added offset
- * @param[in] src pointer to the q7 input vector
- * @param[out] dst pointer to the q15 output vector
- * @param[in] block_size length of the input vector
- * @param[in] offset offset to be added to each input vector element.
- * @return none.
- *
- * @details This function does the q7 to q15 expansion with re-ordering of bytes. Re-ordering is a consequence of
- * the sign extension intrinsic(DSP extension). The tail (i.e., last (N % 4) elements) retains its
- * original order.
- *
- */
- void arm_q7_to_q15_reordered_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset);
- /**
- * @brief Converts the elements from a q7 vector and accumulate to a q15 vector
- * @param[in] *src points to the q7 input vector
- * @param[out] *dst points to the q15 output vector
- * @param[in] block_size length of the input vector
- *
- * \par Description:
- *
- * The equation used for the conversion process is:
- *
- * <pre>
- * dst[n] += (q15_t) src[n] ; 0 <= n < block_size.
- * </pre>
- *
- */
- void arm_nn_accumulate_q7_to_q15(q15_t *dst, const q7_t *src, uint32_t block_size);
- /**
- * @brief Depthwise conv on an im2col buffer where the input channel equals output channel.
- * @param[in] row pointer to row
- * @param[in] col pointer to im2col buffer, always consists of 2 columns.
- * @param[in] num_ch number of channels
- * @param[in] out_shift pointer to per output channel requantization shift parameter.
- * @param[in] out_mult pointer to per output channel requantization multiplier parameter.
- * @param[in] out_offset output tensor offset.
- * @param[in] activation_min minimum value to clamp the output to. Range : int8
- * @param[in] activation_max maximum value to clamp the output to. Range : int8
- * @param[in] kernel_size number of elements in one column.
- * @param[in] output_bias per output channel bias. Range : int32
- * @param[out] out pointer to output
- * @return The function returns one of the two
- * 1. The incremented output pointer for a successful operation or
- * 2. NULL if implementation is not available.
- *
- * @details Supported framework: TensorFlow Lite micro.
- */
- q7_t *arm_nn_depthwise_conv_s8_core(const q7_t *row,
- const q15_t *col,
- const uint16_t num_ch,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t out_offset,
- const int32_t activation_min,
- const int32_t activation_max,
- const uint16_t kernel_size,
- const int32_t *const output_bias,
- q7_t *out);
- /**
- * @brief General Matrix-multiplication function with per-channel requantization.
- * @param[in] input_row pointer to row operand
- * @param[in] input_col pointer to col operand
- * @param[in] output_ch number of rows of input_row
- * @param[in] col_batches number of column batches. Range: 1 to 4
- * @param[in] output_shift pointer to per output channel requantization shift parameter.
- * @param[in] output_mult pointer to per output channel requantization multiplier parameter.
- * @param[in] out_offset output tensor offset.
- * @param[in] col_offset input tensor(col) offset.
- * @param[in] row_offset kernel offset(row). Not used.
- * @param[in] out_activation_min minimum value to clamp the output to. Range : int8
- * @param[in] out_activation_max maximum value to clamp the output to. Range : int8
- * @param[in] row_len number of elements in each row
- * @param[in] bias per output channel bias. Range : int32
- * @param[in,out] out pointer to output
- * @return The function returns one of the two
- * 1. The incremented output pointer for a successful operation or
- * 2. NULL if implementation is not available.
- *
- * @details Supported framework: TensorFlow Lite
- */
- q7_t *arm_nn_mat_mult_s8(const q7_t *input_row,
- const q7_t *input_col,
- const uint16_t output_ch,
- const uint16_t col_batches,
- const int32_t *output_shift,
- const int32_t *output_mult,
- const int32_t out_offset,
- const int32_t col_offset,
- const int32_t row_offset,
- const int16_t out_activation_min,
- const int16_t out_activation_max,
- const uint16_t row_len,
- const int32_t *const bias,
- q7_t *out);
- /**
- * @brief Matrix-multiplication function for convolution with per-channel requantization for 16 bits convolution.
- * @param[in] input_a pointer to operand A
- * @param[in] input_b pointer to operand B, always consists of 2 vectors.
- * @param[in] output_ch number of rows of A
- * @param[in] out_shift pointer to per output channel requantization shift parameter.
- * @param[in] out_mult pointer to per output channel requantization multiplier parameter.
- * @param[in] activation_min minimum value to clamp the output to. Range : int16
- * @param[in] activation_max maximum value to clamp the output to. Range : int16
- * @param[in] num_col_a number of columns of A
- * @param[in] output_bias per output channel bias. Range : int64
- * @param[in,out] out_0 pointer to output
- * @return The function returns one of the two
- * 1. The incremented output pointer for a successful operation or
- * 2. NULL if implementation is not available.
- *
- * @details This function does the matrix multiplication of weight matrix for all output channels
- * with 2 columns from im2col and produces two elements/output_channel. The outputs are
- * clamped in the range provided by activation min and max.
- * Supported framework: TensorFlow Lite micro.
- */
- q15_t *arm_nn_mat_mult_kernel_s16(const q7_t *input_a,
- const q15_t *input_b,
- const int32_t output_ch,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int16_t activation_min,
- const int16_t activation_max,
- const int32_t num_col_a,
- const int64_t *const output_bias,
- q15_t *out_0);
- /**
- * @brief General Matrix-multiplication without requantization for one row & one column
- * @param[in] row_elements number of row elements
- * @param[in] row_base pointer to row operand
- * @param[in] col_base pointer to col operand
- * @param[out] sum_col pointer to store sum of column elements
- * @param[out] output pointer to store result of multiply-accumulate
- * @return The function returns the multiply-accumulated result of the row by column.
- *
- * @details Pseudo-code
- * *output = 0
- * sum_col = 0
- * for (i = 0; i < row_elements; i++)
- * *output += row_base[i] * col_base[i]
- * sum_col += col_base[i]
- *
- */
- arm_status arm_nn_mat_mul_core_1x_s8(int32_t row_elements,
- const int8_t *row_base,
- const int8_t *col_base,
- int32_t *const sum_col,
- int32_t *const output);
- /**
- * @brief Matrix-multiplication with requantization & activation function for four rows and one column
- * @param[in] row_elements number of row elements
- * @param[in] offset offset between rows. Can be the same as row_elements.
- * For e.g, in a 1x1 conv scenario with stride as 1.
- * @param[in] row_base pointer to row operand
- * @param[in] col_base pointer to col operand
- * @param[in] out_ch Number of output channels
- * @param[in] conv_params Pointer to convolution parameters like offsets and activation values
- * @param[in] quant_params Pointer to per-channel quantization parameters
- * @param[in] bias Pointer to per-channel bias
- * @param[out] output Pointer to output where int8 results are stored.
- *
- * @return The function returns the updated output pointer or NULL if implementation is not available.
- *
- * @details Compliant to TFLM int8 specification. MVE implementation only
- */
- int8_t *arm_nn_mat_mul_core_4x_s8(const int32_t row_elements,
- const int32_t offset,
- const int8_t *row_base,
- const int8_t *col_base,
- const int32_t out_ch,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const int32_t *bias,
- int8_t *output);
- /**
- * @brief General Matrix-multiplication function with per-channel requantization.
- * This function assumes:
- * - LHS input matrix NOT transposed (nt)
- * - RHS input matrix transposed (t)
- *
- * @note This operation also performs the broadcast bias addition before the requantization
- *
- * @param[in] lhs Pointer to the LHS input matrix
- * @param[in] rhs Pointer to the RHS input matrix
- * @param[in] bias Pointer to the bias vector. The length of this vector is equal to the number of
- * output columns (or RHS input rows)
- * @param[out] dst Pointer to the output matrix with "m" rows and "n" columns
- * @param[in] dst_multipliers Pointer to the multipliers vector needed for the per-channel requantization.
- * The length of this vector is equal to the number of output columns (or RHS input
- * rows)
- * @param[in] dst_shifts Pointer to the shifts vector needed for the per-channel requantization. The length
- * of this vector is equal to the number of output columns (or RHS input rows)
- * @param[in] lhs_rows Number of LHS input rows
- * @param[in] rhs_rows Number of RHS input rows
- * @param[in] rhs_cols Number of LHS/RHS input columns
- * @param[in] lhs_offset Offset to be applied to the LHS input value
- * @param[in] dst_offset Offset to be applied the output result
- * @param[in] activation_min Minimum value to clamp down the output. Range : int8
- * @param[in] activation_max Maximum value to clamp up the output. Range : int8
- *
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_nn_mat_mult_nt_t_s8(const q7_t *lhs,
- const q7_t *rhs,
- const q31_t *bias,
- q7_t *dst,
- const int32_t *dst_multipliers,
- const int32_t *dst_shifts,
- const int32_t lhs_rows,
- const int32_t rhs_rows,
- const int32_t rhs_cols,
- const int32_t lhs_offset,
- const int32_t dst_offset,
- const int32_t activation_min,
- const int32_t activation_max);
- /**
- * @brief s8 Vector by Matrix (transposed) multiplication
- *
- * @param[in] lhs Input left-hand side vector
- * @param[in] rhs Input right-hand side matrix (transposed)
- * @param[in] bias Input bias
- * @param[out] dst Output vector
- * @param[in] lhs_offset Offset to be added to the input values of the left-hand side vector.
- * Range: -127 to 128
- * @param[in] rhs_offset Not used
- * @param[in] dst_offset Offset to be added to the output values. Range: -127 to 128
- * @param[in] dst_multiplier Output multiplier
- * @param[in] dst_shift Output shift
- * @param[in] rhs_cols Number of columns in the right-hand side input matrix
- * @param[in] rhs_rows Number of rows in the right-hand side input matrix
- * @param[in] activation_min Minimum value to clamp the output to. Range: int8
- * @param[in] activation_max Maximum value to clamp the output to. Range: int8
- * @param[in] address_offset Memory position offset for dst. First output is stored at 'dst', the
- * second at 'dst + address_offset' and so on. Default value is typically 1.
- *
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_nn_vec_mat_mult_t_s8(const q7_t *lhs,
- const q7_t *rhs,
- const q31_t *bias,
- q7_t *dst,
- const int32_t lhs_offset,
- const int32_t rhs_offset,
- const int32_t dst_offset,
- const int32_t dst_multiplier,
- const int32_t dst_shift,
- const int32_t rhs_cols,
- const int32_t rhs_rows,
- const int32_t activation_min,
- const int32_t activation_max,
- const int32_t address_offset);
- /**
- * @brief s16 Vector by Matrix (transposed) multiplication
- *
- * @param[in] lhs Input left-hand side vector
- * @param[in] rhs Input right-hand side matrix (transposed)
- * @param[in] bias Input bias
- * @param[out] dst Output vector
- * @param[in] dst_multiplier Output multiplier
- * @param[in] dst_shift Output shift
- * @param[in] rhs_cols Number of columns in the right-hand side input matrix
- * @param[in] rhs_rows Number of rows in the right-hand side input matrix
- * @param[in] activation_min Minimum value to clamp the output to. Range: int16
- * @param[in] activation_max Maximum value to clamp the output to. Range: int16
- *
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_nn_vec_mat_mult_t_s16(const q15_t *lhs,
- const q7_t *rhs,
- const q63_t *bias,
- q15_t *dst,
- const int32_t dst_multiplier,
- const int32_t dst_shift,
- const int32_t rhs_cols,
- const int32_t rhs_rows,
- const int32_t activation_min,
- const int32_t activation_max);
- /**
- * @brief s8 Vector by Matrix (transposed) multiplication with s16 output
- *
- * @param[in] lhs Input left-hand side vector
- * @param[in] rhs Input right-hand side matrix (transposed)
- * @param[out] dst Output vector
- * @param[in] lhs_offset Offset to be added to the input values of the left-hand side
- * vector. Range: -127 to 128
- * @param[in] rhs_offset Not used
- * @param[in] scatter_offset Address offset for dst. First output is stored at 'dst', the
- * second at 'dst + scatter_offset' and so on.
- * @param[in] dst_multiplier Output multiplier
- * @param[in] dst_shift Output shift
- * @param[in] rhs_cols Number of columns in the right-hand side input matrix
- * @param[in] rhs_rows Number of rows in the right-hand side input matrix
- * @param[in] activation_min Minimum value to clamp the output to. Range: int16
- * @param[in] activation_max Maximum value to clamp the output to. Range: int16
- *
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_nn_vec_mat_mult_t_svdf_s8(const q7_t *lhs,
- const q7_t *rhs,
- q15_t *dst,
- const int32_t lhs_offset,
- const int32_t rhs_offset,
- const int32_t scatter_offset,
- const int32_t dst_multiplier,
- const int32_t dst_shift,
- const int32_t rhs_cols,
- const int32_t rhs_rows,
- const int32_t activation_min,
- const int32_t activation_max);
- /**
- * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in padded cases where
- * the padding is -lhs_offset(Range: int8). Dimensions are the same for lhs and rhs.
- *
- * @param[in] lhs Input left-hand side matrix
- * @param[in] rhs Input right-hand side matrix (transposed)
- * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128
- * @param[in] num_ch Number of channels in LHS/RHS
- * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels
- * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels
- * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128
- * @param[in] activation_min Minimum value to clamp the output to. Range: int8
- * @param[in] activation_max Maximum value to clamp the output to. Range: int8
- * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix
- * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels
- * @param[in] out Output pointer
- *
- * @return The function returns one of the two
- * - Updated output pointer if an implementation is available
- * - NULL if no implementation is available.
- *
- * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read
- * out for the following.
- * - Output shift
- * - Output multiplier
- * - Output bias
- * - rhs
- */
- q7_t *arm_nn_depthwise_conv_nt_t_padded_s8(const q7_t *lhs,
- const q7_t *rhs,
- const int32_t lhs_offset,
- const uint16_t num_ch,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t out_offset,
- const int32_t activation_min,
- const int32_t activation_max,
- const uint16_t row_x_col,
- const int32_t *const output_bias,
- q7_t *out);
- /**
- * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in non-padded cases.
- * Dimensions are the same for lhs and rhs.
- *
- * @param[in] lhs Input left-hand side matrix
- * @param[in] rhs Input right-hand side matrix (transposed)
- * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128
- * @param[in] num_ch Number of channels in LHS/RHS
- * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels.
- * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels.
- * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128
- * @param[in] activation_min Minimum value to clamp the output to. Range: int8
- * @param[in] activation_max Maximum value to clamp the output to. Range: int8
- * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix
- * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels.
- * @param[in] out Output pointer
- *
- * @return The function returns one of the two
- * - Updated output pointer if an implementation is available
- * - NULL if no implementation is available.
- *
- * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read
- * out for the following.
- * - Output shift
- * - Output multiplier
- * - Output bias
- * - rhs
- */
- q7_t *arm_nn_depthwise_conv_nt_t_s8(const q7_t *lhs,
- const q7_t *rhs,
- const int32_t lhs_offset,
- const uint16_t num_ch,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t out_offset,
- const int32_t activation_min,
- const int32_t activation_max,
- const uint16_t row_x_col,
- const int32_t *const output_bias,
- q7_t *out);
- /**
- *@brief Matrix-multiplication function for convolution with reordered columns
- *@param[in] pA pointer to operand A
- *@param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
- *@param[in] ch_im_out numRow of A
- *@param[in] numCol_A numCol of A
- *@param[in] bias_shift amount of left-shift for bias
- *@param[in] out_shift amount of right-shift for output
- *@param[in] bias the bias
- *@param[in,out] pOut pointer to output
- *@return The function returns the incremented output pointer
- *
- *@details This function assumes that data in pInBuffer are reordered
- */
- q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t *pA,
- const q15_t *pInBuffer,
- const uint16_t ch_im_out,
- const uint16_t numCol_A,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q7_t *pOut);
- /**
- @brief Read 2 q15 elements and post increment pointer.
- @param[in] in_q15 Pointer to pointer that holds address of input.
- @return q31 value
- */
- __STATIC_FORCEINLINE q31_t arm_nn_read_q15x2_ia(const q15_t **in_q15)
- {
- q31_t val;
- memcpy(&val, *in_q15, 4);
- *in_q15 += 2;
- return (val);
- }
- /**
- @brief Read 4 q7 from q7 pointer and post increment pointer.
- @param[in] in_q7 Pointer to pointer that holds address of input.
- @return q31 value
- */
- __STATIC_FORCEINLINE q31_t arm_nn_read_q7x4_ia(const q7_t **in_q7)
- {
- q31_t val;
- memcpy(&val, *in_q7, 4);
- *in_q7 += 4;
- return (val);
- }
- /**
- @brief Read 2 q15 from q15 pointer.
- @param[in] in_q15 pointer to address of input.
- @return q31 value
- */
- __STATIC_FORCEINLINE q31_t arm_nn_read_q15x2(const q15_t *in_q15)
- {
- q31_t val;
- memcpy(&val, in_q15, 4);
- return (val);
- }
- /**
- @brief Read 4 q7 values.
- @param[in] in_q7 pointer to address of input.
- @return q31 value
- */
- __STATIC_FORCEINLINE q31_t arm_nn_read_q7x4(const q7_t *in_q7)
- {
- q31_t val;
- memcpy(&val, in_q7, 4);
- return (val);
- }
- /**
- @brief Write four q7 to q7 pointer and increment pointer afterwards.
- @param[in] in Double pointer to input value
- @param[in] value Four bytes to copy
- */
- __STATIC_FORCEINLINE void arm_nn_write_q7x4_ia(q7_t **in, q31_t value)
- {
- memcpy(*in, &value, 4);
- *in += 4;
- }
- /**
- * @brief memset optimized for MVE
- * @param[in, out] dst Destination pointer
- * @param[in] val Value to set
- * @param[in] block_size Number of bytes to copy.
- *
- */
- __STATIC_FORCEINLINE void arm_memset_q7(q7_t *dst, const q7_t val, uint32_t block_size)
- {
- #if defined(ARM_MATH_MVEI)
- __asm volatile(" vdup.8 q0, %[set_val] \n"
- " wlstp.8 lr, %[cnt], 1f \n"
- "2: \n"
- " vstrb.8 q0, [%[in]], #16 \n"
- " letp lr, 2b \n"
- "1: \n"
- : [ in ] "+r"(dst)
- : [ cnt ] "r"(block_size), [ set_val ] "r"(val)
- : "q0", "memory", "r14");
- #else
- memset(dst, val, block_size);
- #endif
- }
- #if defined(ARM_MATH_DSP)
- /**
- * @brief read and expand one q7 word into two q15 words
- */
- __STATIC_FORCEINLINE const q7_t *read_and_pad(const q7_t *source, q31_t *out1, q31_t *out2)
- {
- q31_t inA = arm_nn_read_q7x4_ia(&source);
- q31_t inAbuf1 = __SXTB16_RORn((uint32_t)inA, 8);
- q31_t inAbuf2 = __SXTB16(inA);
- #ifndef ARM_MATH_BIG_ENDIAN
- *out2 = (int32_t)(__PKHTB(inAbuf1, inAbuf2, 16));
- *out1 = (int32_t)(__PKHBT(inAbuf2, inAbuf1, 16));
- #else
- *out1 = (int32_t)(__PKHTB(inAbuf1, inAbuf2, 16));
- *out2 = (int32_t)(__PKHBT(inAbuf2, inAbuf1, 16));
- #endif
- return source;
- }
- /**
- * @brief read and expand one q7 word into two q15 words with reordering
- */
- __STATIC_FORCEINLINE const q7_t *read_and_pad_reordered(const q7_t *source, q31_t *out1, q31_t *out2)
- {
- q31_t inA = arm_nn_read_q7x4_ia(&source);
- #ifndef ARM_MATH_BIG_ENDIAN
- *out2 = __SXTB16(__ROR((uint32_t)inA, 8));
- *out1 = __SXTB16(inA);
- #else
- *out1 = __SXTB16(__ROR((uint32_t)inA, 8));
- *out2 = __SXTB16(inA);
- #endif
- return source;
- }
- /**
- * @brief read and expand one q7 word into two q15 words with reordering and add an offset
- */
- __STATIC_FORCEINLINE const q7_t *
- read_and_pad_reordered_with_offset(const q7_t *source, q31_t *out1, q31_t *out2, q31_t offset)
- {
- q31_t inA = arm_nn_read_q7x4_ia(&source);
- #ifndef ARM_MATH_BIG_ENDIAN
- *out2 = __SXTB16(__ROR((uint32_t)inA, 8));
- *out1 = __SXTB16(inA);
- #else
- *out1 = __SXTB16(__ROR((uint32_t)inA, 8));
- *out2 = __SXTB16(inA);
- #endif
- *out1 = __QADD16(*out1, offset);
- *out2 = __QADD16(*out2, offset);
- return source;
- }
- #endif
- /**
- * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation
- *
- * Basic Math Functions for Neural Network Computation
- *
- */
- /**
- * @brief q7 vector multiplication with variable output shifts
- * @param[in] *pSrcA pointer to the first input vector
- * @param[in] *pSrcB pointer to the second input vector
- * @param[out] *pDst pointer to the output vector
- * @param[in] out_shift amount of right-shift for output
- * @param[in] blockSize number of samples in each vector
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function uses saturating arithmetic.
- * Results outside of the allowable q15 range [0x8000 0x7FFF] will be saturated.
- */
- void arm_nn_mult_q15(q15_t *pSrcA, q15_t *pSrcB, q15_t *pDst, const uint16_t out_shift, uint32_t blockSize);
- /**
- * @brief q7 vector multiplication with variable output shifts
- * @param[in] *pSrcA pointer to the first input vector
- * @param[in] *pSrcB pointer to the second input vector
- * @param[out] *pDst pointer to the output vector
- * @param[in] out_shift amount of right-shift for output
- * @param[in] blockSize number of samples in each vector
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function uses saturating arithmetic.
- * Results outside of the allowable q7 range [0x80 0x7F] will be saturated.
- */
- void arm_nn_mult_q7(q7_t *pSrcA, q7_t *pSrcB, q7_t *pDst, const uint16_t out_shift, uint32_t blockSize);
- /**
- * @brief Matrix-multiplication function for convolution with per-channel requantization.
- * @param[in] input_a pointer to operand A
- * @param[in] input_b pointer to operand B, always consists of 2 vectors.
- * @param[in] output_ch number of rows of A
- * @param[in] out_shift pointer to per output channel requantization shift parameter.
- * @param[in] out_mult pointer to per output channel requantization multiplier parameter.
- * @param[in] out_offset output tensor offset.
- * @param[in] activation_min minimum value to clamp the output to. Range : int8
- * @param[in] activation_max maximum value to clamp the output to. Range : int8
- * @param[in] num_col_a number of columns of A
- * @param[in] output_bias per output channel bias. Range : int32
- * @param[in,out] out_0 pointer to output
- * @return The function returns one of the two
- * 1. The incremented output pointer for a successful operation or
- * 2. NULL if implementation is not available.
- *
- * @details This function does the matrix multiplication of weight matrix for all output channels
- * with 2 columns from im2col and produces two elements/output_channel. The outputs are
- * clamped in the range provided by activation min and max.
- * Supported framework: TensorFlow Lite micro.
- */
- q7_t *arm_nn_mat_mult_kernel_s8_s16(const q7_t *input_a,
- const q15_t *input_b,
- const uint16_t output_ch,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t out_offset,
- const int16_t activation_min,
- const int16_t activation_max,
- const uint16_t num_col_a,
- const int32_t *const output_bias,
- q7_t *out_0);
- /**
- * @brief Common softmax function for s8 input and s8 or s16 output
- * @param[in] input Pointer to the input tensor
- * @param[in] num_rows Number of rows in the input tensor
- * @param[in] row_size Number of elements in each input row
- * @param[in] mult Input quantization multiplier
- * @param[in] shift Input quantization shift within the range [0, 31]
- * @param[in] diff_min Minimum difference with max in row. Used to check if
- * the quantized exponential operation can be performed
- * @param[in] int16_output Indicating s8 output if 0 else s16 output
- * @param[out] output Pointer to the output tensor
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
- void arm_nn_softmax_common_s8(const int8_t *input,
- const int32_t num_rows,
- const int32_t row_size,
- const int32_t mult,
- const int32_t shift,
- const int32_t diff_min,
- const bool int16_output,
- void *output);
- /**
- * @brief macro for adding rounding offset
- */
- #ifndef ARM_NN_TRUNCATE
- #define NN_ROUND(out_shift) ((0x1 << out_shift) >> 1)
- #else
- #define NN_ROUND(out_shift) 0
- #endif
- // Macros for shortening quantization functions' names and avoid long lines
- #define MUL_SAT(a, b) arm_nn_doubling_high_mult((a), (b))
- #define MUL_SAT_MVE(a, b) arm_doubling_high_mult_mve_32x4((a), (b))
- #define MUL_POW2(a, b) arm_nn_mult_by_power_of_two((a), (b))
- #define DIV_POW2(a, b) arm_nn_divide_by_power_of_two((a), (b))
- #define DIV_POW2_MVE(a, b) arm_divide_by_power_of_two_mve((a), (b))
- #define EXP_ON_NEG(x) arm_nn_exp_on_negative_values((x))
- #define ONE_OVER1(x) arm_nn_one_over_one_plus_x_for_x_in_0_1((x))
- /**
- * @brief Saturating doubling high multiply. Result matches
- * NEON instruction VQRDMULH.
- * @param[in] m1 Multiplicand. Range: {NN_Q31_MIN, NN_Q31_MAX}
- * @param[in] m2 Multiplier. Range: {NN_Q31_MIN, NN_Q31_MAX}
- * @return Result of multiplication.
- *
- */
- __STATIC_FORCEINLINE q31_t arm_nn_doubling_high_mult(const q31_t m1, const q31_t m2)
- {
- q31_t result = 0;
- // Rounding offset to add for a right shift of 31
- q63_t mult = 1 << 30;
- if ((m1 < 0) ^ (m2 < 0))
- {
- mult = 1 - mult;
- }
- // Gets resolved as a SMLAL instruction
- mult = mult + (q63_t)m1 * m2;
- // Utilize all of the upper 32 bits. This is the doubling step
- // as well.
- result = (int32_t)(mult / (1ll << 31));
- if ((m1 == m2) && (m1 == (int32_t)NN_Q31_MIN))
- {
- result = NN_Q31_MAX;
- }
- return result;
- }
- /**
- * @brief Doubling high multiply without saturation. This is intended
- * for requantization where the scale is a positive integer
- *
- * @param[in] m1 Multiplicand. Range: {NN_Q31_MIN, NN_Q31_MAX}
- * @param[in] m2 Multiplier Range: {NN_Q31_MIN, NN_Q31_MAX}
- * @return Result of multiplication.
- * @note The result of this matches that of neon instruction
- * VQRDMULH for m1 in range {NN_Q31_MIN, NN_Q31_MAX} and m2 in
- * range {NN_Q31_MIN + 1, NN_Q31_MAX}. Saturation occurs when
- * m1 equals m2 equals NN_Q31_MIN and that is not handled by
- * this function.
- *
- */
- __STATIC_FORCEINLINE q31_t arm_nn_doubling_high_mult_no_sat(const q31_t m1, const q31_t m2)
- {
- q31_t result = 0;
- union arm_nn_long_long mult;
- // Rounding offset to add for a right shift of 31
- mult.word.low = 1 << 30;
- mult.word.high = 0;
- // Gets resolved as a SMLAL instruction
- mult.long_long = mult.long_long + (q63_t)m1 * m2;
- // Utilize all of the upper 32 bits. This is the doubling step
- // as well.
- result = (int32_t)(mult.long_long >> 31);
- return result;
- }
- /**
- * @brief Rounding divide by power of two.
- * @param[in] dividend - Dividend
- * @param[in] exponent - Divisor = power(2, exponent)
- * Range: [0, 31]
- * @return Rounded result of division. Midpoint is rounded away from zero.
- *
- */
- __STATIC_FORCEINLINE q31_t arm_nn_divide_by_power_of_two(const q31_t dividend, const q31_t exponent)
- {
- q31_t result = 0;
- const q31_t remainder_mask = (1 << exponent) - 1;
- int32_t remainder = remainder_mask & dividend;
- // Basic division
- result = dividend >> exponent;
- // Adjust 'result' for rounding (mid point away from zero)
- q31_t threshold = remainder_mask >> 1;
- if (result < 0)
- {
- threshold++;
- }
- if (remainder > threshold)
- {
- result++;
- }
- return result;
- }
- /**
- * @brief Requantize a given value.
- * @param[in] val Value to be requantized
- * @param[in] multiplier multiplier. Range {NN_Q31_MIN + 1, Q32_MAX}
- * @param[in] shift left or right shift for 'val * multiplier'
- *
- * @return Returns (val * multiplier)/(2 ^ shift)
- *
- */
- __STATIC_FORCEINLINE q31_t arm_nn_requantize(const q31_t val, const q31_t multiplier, const q31_t shift)
- {
- #ifdef CMSIS_NN_USE_SINGLE_ROUNDING
- const int64_t total_shift = 31 - shift;
- const int64_t new_val = val * (int64_t)multiplier;
- int32_t result = new_val >> (total_shift - 1);
- result = (result + 1) >> 1;
- return result;
- #else
- return arm_nn_divide_by_power_of_two(arm_nn_doubling_high_mult_no_sat(val * (1 << LEFT_SHIFT(shift)), multiplier),
- RIGHT_SHIFT(shift));
- #endif
- }
- /**
- * @brief Requantize a given 64 bit value.
- * @param[in] val Value to be requantized in the range {-(1<<47)} to {(1<<47) - 1}
- * @param[in] reduced_multiplier Reduced multiplier in the range {NN_Q31_MIN + 1, Q32_MAX} to {Q16_MIN + 1,
- * Q16_MAX}
- * @param[in] shift Left or right shift for 'val * multiplier' in the range {-31} to {7}
- *
- * @return Returns (val * multiplier)/(2 ^ shift)
- *
- */
- __STATIC_FORCEINLINE q31_t arm_nn_requantize_s64(const q63_t val, const q31_t reduced_multiplier, const q31_t shift)
- {
- const q63_t new_val = val * reduced_multiplier;
- q31_t result = new_val >> (14 - shift); // 64->32 bit reduction
- result = (result + 1) >> 1; // Last shift position and insert round
- return result;
- }
- /**
- * @brief memcpy optimized for MVE
- * @param[in, out] dst Destination pointer
- * @param[in] src Source pointer.
- * @param[in] block_size Number of bytes to copy.
- *
- */
- __STATIC_FORCEINLINE void arm_memcpy_q7(q7_t *__RESTRICT dst, const q7_t *__RESTRICT src, uint32_t block_size)
- {
- #if defined(ARM_MATH_MVEI)
- __asm volatile(" wlstp.8 lr, %[cnt], 1f \n"
- "2: \n"
- " vldrb.8 q0, [%[in]], #16 \n"
- " vstrb.8 q0, [%[out]], #16 \n"
- " letp lr, 2b \n"
- "1: \n"
- : [ in ] "+r"(src), [ out ] "+r"(dst)
- : [ cnt ] "r"(block_size)
- : "q0", "memory", "r14");
- #else
- memcpy(dst, src, block_size);
- #endif
- }
- #if defined(ARM_MATH_MVEI)
- /**
- * @brief Vector saturating doubling high multiply returning high half.
- * @param[in] m1 Multiplicand
- * @param[in] m2 Multiplier
- * @return Result of multiplication.
- *
- */
- __STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve(const int32x4_t m1, const q31_t m2)
- {
- return vqrdmulhq_n_s32(m1, m2);
- }
- /**
- * @brief Vector rounding divide by power of two.
- * @param[in] dividend - Dividend vector
- * @param[in] exponent - Divisor = power(2, exponent)
- * Range: [0, 31]
- * @return Rounded result of division. Midpoint is rounded away from zero.
- *
- */
- __STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve(const int32x4_t dividend, const q31_t exponent)
- {
- const int32x4_t shift = vdupq_n_s32(-exponent);
- const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31);
- const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup);
- return vrshlq_s32(fixed_up_dividend, shift);
- }
- /**
- * @brief Requantize a given vector.
- * @param[in] val Vector to be requantized
- * @param[in] multiplier multiplier
- * @param[in] shift shift
- *
- * @return Returns (val * multiplier)/(2 ^ shift)
- *
- */
- __STATIC_FORCEINLINE int32x4_t arm_requantize_mve(const int32x4_t val, const q31_t multiplier, const q31_t shift)
- {
- #ifdef CMSIS_NN_USE_SINGLE_ROUNDING
- const int right_shift = MIN(-1, shift);
- const int left_shift = shift - right_shift;
- const int32x4_t left_shift_dup = vdupq_n_s32(left_shift);
- const int32x4_t right_shift_dup = vdupq_n_s32(right_shift);
- int32x4_t result = vqdmulhq_n_s32(vshlq_s32(val, left_shift_dup), multiplier);
- result = vrshlq_s32(result, right_shift_dup);
- return result;
- #else
- return arm_divide_by_power_of_two_mve(
- arm_doubling_high_mult_mve(vshlq_s32(val, vdupq_n_s32(LEFT_SHIFT(shift))), multiplier), RIGHT_SHIFT(shift));
- #endif
- }
- __STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve_32x4(const int32x4_t m1, const int32x4_t m2)
- {
- return vqrdmulhq_s32(m1, m2);
- }
- __STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve_32x4(const int32x4_t dividend, const int32x4_t exponent)
- {
- const int32x4_t shift = -exponent;
- const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31);
- const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup);
- return vrshlq_s32(fixed_up_dividend, shift);
- }
- __STATIC_FORCEINLINE int32x4_t arm_requantize_mve_32x4(const int32x4_t val,
- const int32x4_t multiplier,
- const int32x4_t shift)
- {
- #ifdef CMSIS_NN_USE_SINGLE_ROUNDING
- const int32x4_t right_shift = vminq_s32(vdupq_n_s32(-1), shift);
- const int32x4_t left_shift = vqsubq_s32(shift, right_shift);
- int32x4_t result = vqdmulhq_s32(vshlq_s32(val, left_shift), multiplier);
- result = vrshlq_s32(result, right_shift);
- return result;
- #else
- const int32x4_t zz = vdupq_n_s32(0);
- const mve_pred16_t p = vcmpgtq_n_s32(shift, 0);
- const int32x4_t left_shift = vpselq_s32(shift, zz, p);
- const int32x4_t right_shift = -vpselq_s32(zz, shift, p);
- return arm_divide_by_power_of_two_mve_32x4(arm_doubling_high_mult_mve_32x4(vshlq_s32(val, left_shift), multiplier),
- right_shift);
- #endif
- }
- #endif
- // @note The following functions are used only for softmax layer, scaled bits = 5 assumed
- __STATIC_FORCEINLINE int32_t arm_nn_exp_on_negative_values(int32_t val)
- {
- int32_t mask = 0;
- int32_t shift = 24;
- const int32_t val_mod_minus_quarter = (val & ((1 << shift) - 1)) - (1 << shift);
- const int32_t remainder = val_mod_minus_quarter - val;
- const int32_t x = (val_mod_minus_quarter << 5) + (1 << 28);
- const int32_t x2 = MUL_SAT(x, x);
- int32_t result = 1895147668 +
- MUL_SAT(1895147668, x + DIV_POW2(MUL_SAT(DIV_POW2(MUL_SAT(x2, x2), 2) + MUL_SAT(x2, x), 715827883) + x2, 1));
- #define SELECT_IF_NON_ZERO(x) \
- { \
- mask = MASK_IF_NON_ZERO(remainder & (1 << shift++)); \
- result = SELECT_USING_MASK(mask, MUL_SAT(result, x), result); \
- }
- SELECT_IF_NON_ZERO(1672461947)
- SELECT_IF_NON_ZERO(1302514674)
- SELECT_IF_NON_ZERO(790015084)
- SELECT_IF_NON_ZERO(290630308)
- SELECT_IF_NON_ZERO(39332535)
- SELECT_IF_NON_ZERO(720401)
- SELECT_IF_NON_ZERO(242)
- #undef SELECT_IF_NON_ZERO
- mask = MASK_IF_ZERO(val);
- return SELECT_USING_MASK(mask, NN_Q31_MAX, result);
- }
- __STATIC_FORCEINLINE q31_t arm_nn_mult_by_power_of_two(const int32_t val, const int32_t exp)
- {
- const int32_t thresh = ((1 << (31 - exp)) - 1);
- int32_t result = val << exp;
- result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val > thresh), NN_Q31_MAX, result);
- result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val < -thresh), NN_Q31_MIN, result);
- return result;
- }
- __STATIC_FORCEINLINE int32_t arm_nn_one_over_one_plus_x_for_x_in_0_1(int32_t val)
- {
- const int64_t sum = (int64_t)val + (int64_t)NN_Q31_MAX;
- const int32_t half_denominator = (int32_t)((sum + (sum >= 0 ? 1 : -1)) / 2L);
- int32_t x = 1515870810 + MUL_SAT(half_denominator, -1010580540);
- const int32_t shift = (1 << 29);
- x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2);
- x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2);
- x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2);
- return MUL_POW2(x, 1);
- }
- /**
- @brief Write 2 q15 elements and post increment pointer.
- @param[in] dest_q15 Pointer to pointer that holds address of destination.
- @param[in] src_q31 Input value to be written.
- */
- __STATIC_FORCEINLINE void arm_nn_write_q15x2_ia(q15_t **dest_q15, q31_t src_q31)
- {
- q31_t val = src_q31;
- memcpy(*dest_q15, &val, 4);
- *dest_q15 += 2;
- }
- #ifdef __cplusplus
- }
- #endif
- #endif
|