| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 |
- /*
- * Copyright (C) 2010-2021 Arm Limited or its affiliates.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /* ----------------------------------------------------------------------
- * Project: CMSIS NN Library
- * Title: arm_convolve_s8.c
- * Description: s8 version of convolution using symmetric quantization.
- *
- * $Date: December 14, 2021
- * $Revision: V.2.1.0
- *
- * Target Processor: Cortex-M cores
- *
- * -------------------------------------------------------------------- */
- #include "arm_nnfunctions.h"
- #include "arm_nnsupportfunctions.h"
- /**
- * @ingroup groupNN
- */
- /**
- * @addtogroup NNConv
- * @{
- */
- /*
- * Basic s8 convolution function.
- *
- * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
- * are multiples of 4 or atleast greater than 4.
- *
- */
- arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data)
- {
- (void)bias_dims;
- if (ctx->buf == NULL && arm_convolve_s8_get_buffer_size(input_dims, filter_dims) > 0)
- {
- return ARM_MATH_ARGUMENT_ERROR;
- }
- q15_t *buffer_a = (q15_t *)ctx->buf;
- const int32_t input_batches = input_dims->n;
- const uint16_t input_x = input_dims->w;
- const uint16_t input_y = input_dims->h;
- const uint16_t input_ch = input_dims->c;
- const uint16_t kernel_x = filter_dims->w;
- const uint16_t kernel_y = filter_dims->h;
- const uint16_t output_x = output_dims->w;
- const uint16_t output_y = output_dims->h;
- const uint16_t output_ch = output_dims->c;
- const uint16_t pad_x = conv_params->padding.w;
- const uint16_t pad_y = conv_params->padding.h;
- const uint16_t stride_x = conv_params->stride.w;
- const uint16_t stride_y = conv_params->stride.h;
- const int32_t input_offset = conv_params->input_offset;
- const int32_t out_offset = conv_params->output_offset;
- const int32_t out_activation_min = conv_params->activation.min;
- const int32_t out_activation_max = conv_params->activation.max;
- int32_t *output_mult = quant_params->multiplier;
- int32_t *output_shift = quant_params->shift;
- int i_batch;
- for (i_batch = 0; i_batch < input_batches; i_batch++)
- {
- #if defined(ARM_MATH_MVEI)
- /* Generate upto four columns from the input tensor a GEMM computation */
- q7_t *im2col_buf = (q7_t *)buffer_a;
- q7_t *out = output_data;
- int32_t buffer_fill_cnt = 0;
- int32_t padded = 0;
- const int32_t num_elem = kernel_x * kernel_y * input_ch;
- const int32_t dilation_x = conv_params->dilation.w;
- const int32_t dilation_y = conv_params->dilation.h;
- /* This part implements the im2col function */
- for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
- {
- for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
- {
- const int32_t base_idx_x = stride_x * i_out_x - pad_x;
- const int32_t base_idx_y = stride_y * i_out_y - pad_y;
- for (int32_t i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
- {
- for (int32_t i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
- {
- const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
- const int32_t k_x = base_idx_x + dilation_x * i_ker_x;
- if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
- {
- memset(im2col_buf, (int8_t)-input_offset, sizeof(q7_t) * input_ch);
- padded = 1;
- }
- else
- {
- arm_memcpy_q7(im2col_buf, input_data + (k_y * input_x + k_x) * input_ch, input_ch);
- }
- im2col_buf += input_ch;
- }
- }
- buffer_fill_cnt++;
- /* Computation is filed for every 4 columns */
- if (buffer_fill_cnt == 4 && (padded == 0))
- {
- buffer_fill_cnt = 0;
- out = arm_nn_mat_mul_core_4x_s8(num_elem,
- num_elem,
- (q7_t *)buffer_a,
- filter_data,
- output_ch,
- conv_params,
- quant_params,
- bias_data,
- out);
- im2col_buf = (q7_t *)buffer_a;
- }
- else if (buffer_fill_cnt == 4 && (padded != 0))
- {
- buffer_fill_cnt = 0;
- out = arm_nn_mat_mult_s8(filter_data,
- (q7_t *)buffer_a,
- output_ch,
- 4,
- output_shift,
- output_mult,
- out_offset,
- input_offset,
- 0,
- out_activation_min,
- out_activation_max,
- num_elem,
- bias_data,
- out);
- im2col_buf = (q7_t *)buffer_a;
- padded = 0;
- }
- }
- }
- /* Handle left over columns */
- if (buffer_fill_cnt != 0)
- {
- out = arm_nn_mat_mult_s8(filter_data,
- (q7_t *)buffer_a,
- output_ch,
- buffer_fill_cnt,
- output_shift,
- output_mult,
- out_offset,
- input_offset,
- 0,
- out_activation_min,
- out_activation_max,
- num_elem,
- bias_data,
- out);
- }
- #else // #if defined(ARM_MATH_MVEI)
- const uint16_t dilation_x = conv_params->dilation.w;
- const uint16_t dilation_y = conv_params->dilation.h;
- int32_t i_out_y, i_out_x, i_ker_y, i_ker_x;
- /* Generate two columns from the input tensor a GEMM computation */
- q15_t *two_column_buf = buffer_a;
- q7_t *out = output_data;
- /* This part implements the im2col function */
- for (i_out_y = 0; i_out_y < output_y; i_out_y++)
- {
- for (i_out_x = 0; i_out_x < output_x; i_out_x++)
- {
- const int32_t base_idx_y = stride_y * i_out_y - pad_y;
- const int32_t base_idx_x = stride_x * i_out_x - pad_x;
- for (i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
- {
- for (i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
- {
- const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
- const int32_t k_x = base_idx_x + dilation_x * i_ker_x;
- if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
- {
- /* Filling 0 for out-of-bound paddings */
- memset(two_column_buf, 0, sizeof(q15_t) * input_ch);
- }
- else
- {
- /* Copying the pixel data to column */
- arm_q7_to_q15_with_offset(
- input_data + (k_y * input_x + k_x) * input_ch, two_column_buf, input_ch, input_offset);
- }
- two_column_buf += input_ch;
- }
- }
- /* Computation is filed for every 2 columns */
- if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x)
- {
- out = arm_nn_mat_mult_kernel_s8_s16(filter_data,
- buffer_a,
- output_ch,
- output_shift,
- output_mult,
- out_offset,
- out_activation_min,
- out_activation_max,
- input_ch * kernel_y * kernel_x,
- bias_data,
- out);
- /* counter reset */
- two_column_buf = buffer_a;
- }
- }
- }
- /* left-over because odd number of output pixels */
- if (two_column_buf != buffer_a)
- {
- const q7_t *ker_a = filter_data;
- int i;
- for (i = 0; i < output_ch; i++)
- {
- /* Load the accumulator with bias first */
- q31_t sum = 0;
- if (bias_data)
- {
- sum = bias_data[i];
- }
- /* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
- const q15_t *ip_as_col = buffer_a;
- /* 4 multiply and accumulates are done in one loop. */
- #if defined(ARM_MATH_DSP)
- uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2;
- while (col_count)
- {
- q31_t ker_a1, ker_a2;
- q31_t ip_b1, ip_b2;
- ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);
- ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
- sum = __SMLAD(ker_a1, ip_b1, sum);
- ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
- sum = __SMLAD(ker_a2, ip_b2, sum);
- col_count--;
- }
- /* Handle left over mac */
- col_count = input_ch * kernel_y * kernel_x & 0x3;
- #else
- uint16_t col_count = input_ch * kernel_y * kernel_x;
- #endif
- while (col_count)
- {
- q7_t ker_a1 = *ker_a++;
- q15_t ip_b1 = *ip_as_col++;
- sum += ker_a1 * ip_b1;
- col_count--;
- }
- sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
- sum += out_offset;
- sum = MAX(sum, out_activation_min);
- sum = MIN(sum, out_activation_max);
- *out++ = (q7_t)sum;
- }
- }
- #endif // #if defined(ARM_MATH_MVEI)
- /* Advance to the next batch */
- input_data += (input_x * input_y * input_ch);
- output_data += (output_x * output_y * output_ch);
- }
- /* Return to application */
- return ARM_MATH_SUCCESS;
- }
- int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
- {
- #if defined(ARM_MATH_MVEI)
- int32_t col_length = input_dims->c * filter_dims->w * filter_dims->h;
- // Get number of complete int16 lanes(multiple of 8) for given col_length. This is dependent on
- // implementation of arm_nn_mat_mult_s8
- col_length = (col_length + 7) / 8;
- // 4 -> number of im2col buffers, 8 -> 8 elements per Q register
- return 4 * col_length * 8 * (int32_t)sizeof(int8_t);
- #else
- return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t);
- #endif
- }
- /**
- * @} end of NNConv group
- */
|