arm_convolve_wrapper_s8.c 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. /*
  2. * Copyright (C) 2010-2021 Arm Limited or its affiliates.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Licensed under the Apache License, Version 2.0 (the License); you may
  7. * not use this file except in compliance with the License.
  8. * You may obtain a copy of the License at
  9. *
  10. * www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  14. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. */
  18. /* ----------------------------------------------------------------------
  19. * Project: CMSIS NN Library
  20. * Title: arm_convolve_wrapper_s8.c
  21. * Description: s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
  22. * cmsis-nn to perform the convolution.
  23. *
  24. * $Date: 02. December 2021
  25. * $Revision: V.1.1.0
  26. *
  27. * Target Processor: Cortex-M cores
  28. *
  29. * -------------------------------------------------------------------- */
  30. #include "arm_nnfunctions.h"
  31. /**
  32. * @ingroup groupNN
  33. */
  34. /**
  35. * @addtogroup NNConv
  36. * @{
  37. */
  38. /*
  39. * Convolution layer
  40. *
  41. * Refer header file for details.
  42. *
  43. */
  44. arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
  45. const cmsis_nn_conv_params *conv_params,
  46. const cmsis_nn_per_channel_quant_params *quant_params,
  47. const cmsis_nn_dims *input_dims,
  48. const q7_t *input_data,
  49. const cmsis_nn_dims *filter_dims,
  50. const q7_t *filter_data,
  51. const cmsis_nn_dims *bias_dims,
  52. const int32_t *bias_data,
  53. const cmsis_nn_dims *output_dims,
  54. q7_t *output_data)
  55. {
  56. if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (input_dims->c % 4 == 0) &&
  57. (conv_params->stride.w == 1) && (conv_params->stride.h == 1) && (filter_dims->w == 1) &&
  58. (filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
  59. {
  60. return arm_convolve_1x1_s8_fast(ctx,
  61. conv_params,
  62. quant_params,
  63. input_dims,
  64. input_data,
  65. filter_dims,
  66. filter_data,
  67. bias_dims,
  68. bias_data,
  69. output_dims,
  70. output_data);
  71. }
  72. else if ((output_dims->h == 1) && (input_dims->h == 1) && (filter_dims->h == 1) && (output_dims->w % 4 == 0) &&
  73. (input_dims->n == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
  74. {
  75. return arm_convolve_1_x_n_s8(ctx,
  76. conv_params,
  77. quant_params,
  78. input_dims,
  79. input_data,
  80. filter_dims,
  81. filter_data,
  82. bias_dims,
  83. bias_data,
  84. output_dims,
  85. output_data);
  86. }
  87. else
  88. {
  89. return arm_convolve_s8(ctx,
  90. conv_params,
  91. quant_params,
  92. input_dims,
  93. input_data,
  94. filter_dims,
  95. filter_data,
  96. bias_dims,
  97. bias_data,
  98. output_dims,
  99. output_data);
  100. }
  101. }
  102. int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
  103. const cmsis_nn_dims *input_dims,
  104. const cmsis_nn_dims *filter_dims,
  105. const cmsis_nn_dims *output_dims)
  106. {
  107. if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (input_dims->c % 4 == 0) &&
  108. (conv_params->stride.w == 1) && (conv_params->stride.h == 1) && (filter_dims->w == 1) &&
  109. (filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
  110. {
  111. return arm_convolve_1x1_s8_fast_get_buffer_size(input_dims);
  112. }
  113. else if ((output_dims->h == 1) && (input_dims->h == 1) && (filter_dims->h == 1) && (output_dims->w % 4 == 0) &&
  114. (input_dims->n == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
  115. {
  116. return arm_convolve_1_x_n_s8_get_buffer_size(input_dims, filter_dims);
  117. }
  118. else
  119. {
  120. return arm_convolve_s8_get_buffer_size(input_dims, filter_dims);
  121. }
  122. }
  123. /**
  124. * @} end of NNConv group
  125. */