| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- /*
- * Copyright (C) 2010-2021 Arm Limited or its affiliates.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /* ----------------------------------------------------------------------
- * Project: CMSIS NN Library
- * Title: arm_convolve_wrapper_s8.c
- * Description: s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
- * cmsis-nn to perform the convolution.
- *
- * $Date: 02. December 2021
- * $Revision: V.1.1.0
- *
- * Target Processor: Cortex-M cores
- *
- * -------------------------------------------------------------------- */
- #include "arm_nnfunctions.h"
- /**
- * @ingroup groupNN
- */
- /**
- * @addtogroup NNConv
- * @{
- */
- /*
- * Convolution layer
- *
- * Refer header file for details.
- *
- */
- arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data)
- {
- if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (input_dims->c % 4 == 0) &&
- (conv_params->stride.w == 1) && (conv_params->stride.h == 1) && (filter_dims->w == 1) &&
- (filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
- {
- return arm_convolve_1x1_s8_fast(ctx,
- conv_params,
- quant_params,
- input_dims,
- input_data,
- filter_dims,
- filter_data,
- bias_dims,
- bias_data,
- output_dims,
- output_data);
- }
- else if ((output_dims->h == 1) && (input_dims->h == 1) && (filter_dims->h == 1) && (output_dims->w % 4 == 0) &&
- (input_dims->n == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
- {
- return arm_convolve_1_x_n_s8(ctx,
- conv_params,
- quant_params,
- input_dims,
- input_data,
- filter_dims,
- filter_data,
- bias_dims,
- bias_data,
- output_dims,
- output_data);
- }
- else
- {
- return arm_convolve_s8(ctx,
- conv_params,
- quant_params,
- input_dims,
- input_data,
- filter_dims,
- filter_data,
- bias_dims,
- bias_data,
- output_dims,
- output_data);
- }
- }
- int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_dims *input_dims,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims)
- {
- if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (input_dims->c % 4 == 0) &&
- (conv_params->stride.w == 1) && (conv_params->stride.h == 1) && (filter_dims->w == 1) &&
- (filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
- {
- return arm_convolve_1x1_s8_fast_get_buffer_size(input_dims);
- }
- else if ((output_dims->h == 1) && (input_dims->h == 1) && (filter_dims->h == 1) && (output_dims->w % 4 == 0) &&
- (input_dims->n == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
- {
- return arm_convolve_1_x_n_s8_get_buffer_size(input_dims, filter_dims);
- }
- else
- {
- return arm_convolve_s8_get_buffer_size(input_dims, filter_dims);
- }
- }
- /**
- * @} end of NNConv group
- */
|