| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433 |
- /*
- * Copyright (C) 2010-2021 Arm Limited or its affiliates.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /* ----------------------------------------------------------------------
- * Project: CMSIS NN Library
- * Title: arm_depthwise_conv_s8_opt.c
- * Description: Optimized s8 depthwise separable convolution function for
- * channel multiplier of 1.
- *
- * $Date: January 26, 2021
- * $Revision: V.2.0.3
- *
- * Target Processor: Cortex-M CPUs
- *
- * -------------------------------------------------------------------- */
- #include "arm_nnfunctions.h"
- #include "arm_nnsupportfunctions.h"
- /**
- * @ingroup groupNN
- */
- /**
- * @addtogroup NNConv
- * @{
- */
- /*
- * Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel
- *
- * Refer prototype header file for details.
- *
- */
- arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input,
- const cmsis_nn_dims *filter_dims,
- const q7_t *kernel,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias,
- const cmsis_nn_dims *output_dims,
- q7_t *output)
- {
- const int32_t input_ch = input_dims->c;
- const int32_t output_ch = output_dims->c;
- /* Check input constraints input_ch == output_ch */
- if (input_ch != output_ch)
- {
- return ARM_MATH_SIZE_MISMATCH;
- }
- if (ctx->buf == NULL && arm_depthwise_conv_s8_opt_get_buffer_size(input_dims, filter_dims) > 0)
- {
- return ARM_MATH_ARGUMENT_ERROR;
- }
- #ifdef ARM_MATH_DSP
- const int32_t input_x = input_dims->w;
- const int32_t input_y = input_dims->h;
- const int32_t kernel_x = filter_dims->w;
- const int32_t kernel_y = filter_dims->h;
- const int32_t pad_x = dw_conv_params->padding.w;
- const int32_t pad_y = dw_conv_params->padding.h;
- const int32_t stride_x = dw_conv_params->stride.w;
- const int32_t stride_y = dw_conv_params->stride.h;
- const int32_t *output_shift = quant_params->shift;
- const int32_t *output_mult = quant_params->multiplier;
- const int32_t output_x = output_dims->w;
- const int32_t output_y = output_dims->h;
- const int32_t output_offset = dw_conv_params->output_offset;
- const int32_t input_offset = dw_conv_params->input_offset;
- const int32_t output_activation_min = dw_conv_params->activation.min;
- const int32_t output_activation_max = dw_conv_params->activation.max;
- q15_t *buffer_a = (q15_t *)ctx->buf;
- #ifdef ARM_MATH_MVEI
- (void)bias_dims;
- /* Generate two columns from the input tensor */
- q7_t *lhs_buffer = (q7_t *)buffer_a;
- q7_t *out = output;
- int padded = 0;
- int buffer_count = 0;
- const int32_t kernel_size = kernel_x * kernel_y;
- /* This part implements the im2col function */
- for (int i_out_y = 0, base_idx_y = -pad_y; i_out_y < output_y; base_idx_y += stride_y, i_out_y++)
- {
- for (int i_out_x = 0, base_idx_x = -pad_x; i_out_x < output_x; base_idx_x += stride_x, i_out_x++)
- {
- for (int i_ker_y = base_idx_y; i_ker_y < base_idx_y + kernel_y; i_ker_y++)
- {
- for (int i_ker_x = base_idx_x; i_ker_x < base_idx_x + kernel_x; i_ker_x++)
- {
- if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
- {
- arm_memset_q7(lhs_buffer, (int8_t)-input_offset, (uint32_t)input_ch);
- padded = 1;
- }
- else
- {
- arm_memcpy_q7(lhs_buffer, input + (i_ker_y * input_x + i_ker_x) * input_ch, (uint32_t)input_ch);
- }
- lhs_buffer += input_ch;
- }
- }
- buffer_count++;
- if (buffer_count == 4)
- {
- lhs_buffer = (q7_t *)buffer_a;
- if (padded == 0)
- {
- out = arm_nn_depthwise_conv_nt_t_s8(lhs_buffer,
- kernel,
- input_offset,
- input_ch,
- output_shift,
- output_mult,
- output_offset,
- output_activation_min,
- output_activation_max,
- kernel_size,
- bias,
- out);
- }
- else
- {
- out = arm_nn_depthwise_conv_nt_t_padded_s8(lhs_buffer,
- kernel,
- input_offset,
- input_ch,
- output_shift,
- output_mult,
- output_offset,
- output_activation_min,
- output_activation_max,
- kernel_size,
- bias,
- out);
- padded = 0;
- }
- buffer_count = 0;
- }
- }
- }
- /* Handle left over buffers */
- lhs_buffer = (q7_t *)buffer_a;
- for (int i_buf = 0; i_buf < buffer_count; i_buf++)
- {
- int32_t loop_count = (input_ch + 3) / 4;
- int32_t num_ch_to_process = input_ch;
- for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count; num_ch_to_process -= 4, offset += 4, i_loop_cnt++)
- {
- const int8_t *col_0 = lhs_buffer + (kernel_size * input_ch * i_buf) + offset;
- const int8_t *row_0 = kernel + offset;
- int32x4_t out_0 = vldrwq_s32(&bias[offset]);
- for (int i_ker = 0; i_ker < kernel_size; i_ker++)
- {
- const int32x4_t ker_0 = vldrbq_s32(row_0);
- int32x4_t ip_0 = vldrbq_s32(col_0);
- ip_0 = vaddq_n_s32(ip_0, input_offset);
- out_0 += vmulq_s32(ip_0, ker_0);
- col_0 += input_ch;
- row_0 += input_ch;
- }
- const int32x4_t mult = vldrwq_s32(&output_mult[offset]);
- const int32x4_t shift = vldrwq_s32(&output_shift[offset]);
- out_0 = arm_requantize_mve_32x4(out_0, mult, shift);
- out_0 = vaddq_n_s32(out_0, output_offset);
- out_0 = vmaxq_s32(out_0, vdupq_n_s32(output_activation_min));
- out_0 = vminq_s32(out_0, vdupq_n_s32(output_activation_max));
- mve_pred16_t p = vctp32q((uint32_t)num_ch_to_process);
- vstrbq_p_s32(out, out_0, p);
- out += 4;
- }
- const int tail_ch = input_ch & 0x3;
- if (tail_ch != 0)
- {
- out -= (4 - tail_ch);
- }
- }
- #else // ARM_MATH_DSP
- (void)bias_dims;
- /* Run the following code in cores using DSP extension */
- q15_t *const col_buffer_start = buffer_a;
- q15_t *col_buffer = col_buffer_start;
- const int32_t *const bias_start_pos = bias;
- const q31_t *const out_mult_start_pos = output_mult;
- const q31_t *const out_shift_start_pos = output_shift;
- uint16_t row_count;
- uint16_t row_shift;
- for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
- {
- const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
- for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
- {
- const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
- /* Out of bounds is only considered for the y axis as it provides a contiguous zero'ing opportunity than
- along the x axis */
- const int ker_y_start = MAX(0, -base_idx_y);
- /* Condition for kernel end dimension: (base_idx_y + ker_y_end) < input_y */
- const int ker_y_end = MIN(kernel_y, input_y - base_idx_y);
- int32_t index = 0;
- if (ker_y_start != 0)
- {
- memset(&col_buffer[index], 0, (kernel_x * input_ch) * ker_y_start * sizeof(q15_t));
- index += (kernel_x * input_ch) * ker_y_start;
- }
- for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
- {
- const int32_t idx_y = base_idx_y + i_ker_y;
- for (int i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
- {
- const int32_t idx_x = base_idx_x + i_ker_x;
- if (idx_x < 0 || idx_x >= input_x)
- {
- memset(&col_buffer[index], 0, input_ch * sizeof(q15_t));
- }
- else
- {
- arm_q7_to_q15_with_offset((q7_t *)input + (idx_y * input_x + idx_x) * input_ch,
- &col_buffer[index],
- input_ch,
- input_offset);
- }
- index += input_ch;
- }
- }
- const int diff = kernel_y - ker_y_end;
- if (diff != 0)
- {
- memset(&col_buffer[index], 0, (kernel_x * input_ch) * diff * sizeof(q15_t));
- }
- row_count = output_ch / 4;
- row_shift = 0;
- bias = bias_start_pos;
- output_mult = out_mult_start_pos;
- output_shift = out_shift_start_pos;
- while (row_count)
- {
- q31_t sum = *bias++;
- q31_t sum_2 = *bias++;
- q31_t sum_3 = *bias++;
- q31_t sum_4 = *bias++;
- uint16_t col_count = (kernel_x * kernel_y) / 2;
- q15_t *col_pos = col_buffer_start + row_shift;
- const q7_t *row_pos = kernel + row_shift;
- row_shift += 4;
- while (col_count)
- {
- /* General idea is to read 4 + 4 (input, kernel) pair and re-arrange them in the right order to
- use in a SMLAD instruction . One run of this loop produces 4 partial outputs with 8 MACs. */
- /* Note: variable names can be improved here to align with rows and columns. */
- q31_t ip_a1, ip_a2, ip_b1, ip_b2, op_a, op_b, op_c;
- /* Read 4 weights */
- ip_b1 = arm_nn_read_q7x4(row_pos);
- ip_a1 = arm_nn_read_q7x4(row_pos + input_ch);
- op_a = arm_nn_read_q15x2(col_pos);
- op_b = arm_nn_read_q15x2(col_pos + input_ch);
- ip_a2 = __SXTB16(ip_b1);
- ip_b1 = __SXTB16(__ROR(ip_b1, 8));
- ip_b2 = __SXTB16(ip_a1);
- ip_a1 = __SXTB16(__ROR(ip_a1, 8));
- op_c = __PKHBT(op_b, op_a, 16);
- op_a = __PKHTB(op_b, op_a, 16);
- op_b = __PKHBT(ip_b2, ip_a2, 16);
- sum = __SMLAD(op_c, op_b, sum);
- op_b = __PKHBT(ip_b1, ip_a1, 16);
- sum_2 = __SMLAD(op_a, op_b, sum_2);
- op_a = arm_nn_read_q15x2(col_pos + 2);
- op_b = arm_nn_read_q15x2(col_pos + input_ch + 2);
- op_c = __PKHBT(op_b, op_a, 16);
- op_a = __PKHTB(op_b, op_a, 16);
- op_b = __PKHTB(ip_a2, ip_b2, 16);
- sum_3 = __SMLAD(op_c, op_b, sum_3);
- op_b = __PKHTB(ip_a1, ip_b1, 16);
- sum_4 = __SMLAD(op_a, op_b, sum_4);
- row_pos += input_ch << 1;
- col_pos += input_ch << 1;
- col_count--;
- }
- col_count = (kernel_x * kernel_y) & 0x1;
- while (col_count)
- {
- sum += row_pos[0] * col_pos[0];
- sum_2 += row_pos[1] * col_pos[1];
- sum_3 += row_pos[2] * col_pos[2];
- sum_4 += row_pos[3] * col_pos[3];
- row_pos += input_ch;
- col_pos += input_ch;
- col_count--;
- }
- sum = arm_nn_requantize(sum, *output_mult++, *output_shift++);
- sum += output_offset;
- sum = MAX(sum, output_activation_min);
- sum = MIN(sum, output_activation_max);
- *output++ = (q7_t)sum;
- sum_2 = arm_nn_requantize(sum_2, *output_mult++, *output_shift++);
- sum_2 += output_offset;
- sum_2 = MAX(sum_2, output_activation_min);
- sum_2 = MIN(sum_2, output_activation_max);
- *output++ = (q7_t)sum_2;
- sum_3 = arm_nn_requantize(sum_3, *output_mult++, *output_shift++);
- sum_3 += output_offset;
- sum_3 = MAX(sum_3, output_activation_min);
- sum_3 = MIN(sum_3, output_activation_max);
- *output++ = (q7_t)sum_3;
- sum_4 = arm_nn_requantize(sum_4, *output_mult++, *output_shift++);
- sum_4 += output_offset;
- sum_4 = MAX(sum_4, output_activation_min);
- sum_4 = MIN(sum_4, output_activation_max);
- *output++ = (q7_t)sum_4;
- row_count--;
- }
- row_count = output_ch & 0x3;
- while (row_count)
- {
- q15_t *col_pos = col_buffer_start + row_shift;
- const q7_t *row_pos = kernel + row_shift;
- q31_t sum = *bias++;
- const uint16_t col_count = (kernel_x * kernel_y);
- row_shift += 1;
- for (int i = 0; i < col_count; i++)
- {
- sum += row_pos[i * input_ch] * col_pos[i * input_ch];
- }
- sum = arm_nn_requantize(sum, *output_mult++, *output_shift++);
- sum += output_offset;
- sum = MAX(sum, output_activation_min);
- sum = MIN(sum, output_activation_max);
- *output++ = (q7_t)sum;
- row_count--;
- }
- // clear counter and pointers
- col_buffer = col_buffer_start;
- }
- }
- #endif
- #else
- /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
- return arm_depthwise_conv_s8(ctx,
- dw_conv_params,
- quant_params,
- input_dims,
- input,
- filter_dims,
- kernel,
- bias_dims,
- bias,
- output_dims,
- output);
- #endif /* ARM_MATH_MVEI | ARM_MATH_DSP */
- /* Return to application */
- return ARM_MATH_SUCCESS;
- }
- int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
- {
- #if defined(ARM_MATH_MVEI)
- /* The + 4 accounts for out of bounds read of the lhs buffers in the *_nt_t_* functions. */
- return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t) + 4;
- #elif defined(ARM_MATH_DSP)
- return (input_dims->c * filter_dims->w * filter_dims->h) * sizeof(int16_t);
- #else
- (void)input_dims;
- (void)filter_dims;
- return 0;
- #endif
- }
- /**
- * @} end of NNConv group
- */
|