Coding Rules for
OpENer — Open Source EtherNet/IP™ Adapter Stack

Version 2.0

Martin Melik Merkumians®

2015-11-15
Contents
1 Introduction 1
2 Comments 2
2.1 Fileheaders 2
22 RevisionHistory 2
23 Keywords 2
3 Datatypes 2
4 Naming of Identifiers 3
41 Pre-&Postfixes e e e 3
42 Variables e 4
43 Constants. e e 4
44 Functions e e e 4
45 Structs e 4
46 Enums e e e e 5
5 Code Formatting 5
6 Assertions 5

1 Introduction

This document describes the coding rules, which has to be used in the OpENer project. These
rules are mainly the Google C++ style rules, with some extensions specific to C and the OpENer
project. If something is not covered by the rules given in this document, please check the of-
ficial Google C++ style guide, available at http://google.github.io/styleguide/cppguide.
html. Additional code style examples can be found at https://gist.github.com/davidzchen/
9187878.

As the OpENer code style aims to be as close as possible to the established Google C++ code
style, please file an issue if anything in this guide contradicts the Google C++ code style.

*melik-merkumians@acin.tuwien.ac.at

http://google.github.io/styleguide/cppguide.html
http://google.github.io/styleguide/cppguide.html
https://gist.github.com/davidzchen/9187878
https://gist.github.com/davidzchen/9187878

2 Comments

A sufficient amount of comments has to be written. There are never too many comments, whereas
invalid comments are worse than none — thus invalid comments have to be removed from the
source code. Comments have to be written in English.

Comments for function, structure, ... definitions have to follow the conventions of Doxy-
gen to allow the automated generation of documentation for the source code. Hereby Java-style
Doxygen comments shall be used. Doxygen comments shall therefore start with slash and two
starts, and use the @ symbol to indicate Doxygen keywords. For enums, variables, and strucutres
inline documentation with /**< shall be used. Autobrief behavior shall not be assumed for Doxy-
gen comments. See the example below.

/** @brief function , structure, enum, etc. to comment

%

* Detailed explanation , spanning multiple lines if needed.
* @param parameterl Parameterl description

* @return Return value description

*/

int foo(char bar) f{

}

const int g_kFooBar = 1; /+*< Global constant which needs documentation =/

Comments have to be meaningful, to describe to program and to be up to date.

2.1 Fileheaders

Every source-file must contain a fileheader as follows:

[R R R R R R R R R R
+ Copyright (c) 2009, Rockwell Automation, Inc.
All rights reserved.

*
*

= Contributors:

* <date >: <author>, <author email> — changes

KRR R R %/

Each author needs to explain his changes in the code.

2.2 Revision History

The revision history has to be done in a style usable by Doxygen. This means that the history is
independent of the files, but all classes are documented.

2.3 Keywords
The following Keywords should be used in the source code to mark special comments:

* TODO: For comments about possible or needed extensions

* FIXME: To be used for comments about potential (or known) bugs

3 Datatypes

Table 1 on the following page contains the definitions of important standard datatypes. This is
done to ensure a machine independant defintion of the bit-width of the standard data types. For
OpENer-development these definitions are in the file: src/typedefs.h

These data types shall only be used when the bit size is important for the correct operation
of the code, whereby Eip-prefixed data types shall be used for communication functions, and
Cip-prefixed data types shall be used for CIP related functions and objects. If not we advice to

use the type int or unsigned int for most variables, as this is the most efficient data type and

Table 1: Data types used in OpENer

defined data type bit-width / description used C-datatype
EipByte 8 bit unsigned uint8_t
EipInt8 8 bit signed int8_t
EipIntl6 16 bit signed intl6_t
EipInt32 32 bit signed int32_t
EipInt64 64 bit signed int64_t
EipUint8 8 bit unsigned uint8_t
EipUint16 16 bit unsigned uintl6_t
EipUint32 32 bit unsigned uint32_t
EipUint64 64 bit unsigned uint64_t
EipFloat single precission IEEE float (32 bit) float
EipDfloat double precission IEEE float (64 bit) double
EipBool8 byte variable as boolean value unit8_t
CipOctet unspecified type uint8_t
CipBool byte variable as boolean value uint8_t
CipByte 8 bit unsigned uint8_t
CipWord 16 bit unsigned uintl6_t
CipDword 32 bit unsigned uint32_t
CipUsint 8 bit unsigned uint8_t
CipUint 16 bit unsigned uintl6_t
CipUdint 32 bit unsigned uint32_t
CipSint 8 bit signed int8_t
CipInt 16 bit signed intl6_t
CipDint 32 bit signed int32_t
CipReal single precission IEEE float (32 bit) float
CipLreal double precission IEEE float (64 bit) double
CipLint 64 bit signed int64_t
CipUlint 64 bit unsigned uint64_t
CipLword 64 bit unsigned uint64_t

can lead on some platforms (e.g., ARM) even to smaller code size.

4 Naming of Identifiers

Every identifier has to be named in English. The first character of an identifier must not contain
underscores (there are some compiler directives which start with underscores and this could lead
to conflicts). Mixed case letters has to be used and the appropriate prefixes have to be inserted

where necessary.

4.1 Pre- & Postfixes

The following prefixes have to be applied to identifiers:

”

" o

”

S

shall be prefixed for global variables.

_" shall be postfixed for member variables. These are usually CIP object variables with
file-global scope.

4.2 Variables

Variables have to be named self explanatory. The names have to be provided with the appro-
priate pre- or postfix and shall be all lowercase letters, and if a name consists of more than one
word underscores shall be used for separating these words. The only exception are loop vari-
ables (thereby the use of i, j, k is allowed). Only one variable declaration per line is allowed.
Pointer operators at the declaration have to be located in front of the variable (not after the type
identifier). If possible initializations have to be done directly at the declaration.

Examples

int i;
int local_variable;
CipBool boolean_flag_in_cip_object_;

4.3 Constants

The preferred way to declare constants is to define them asconst data types, if this is not possible
constants shall be defined as pre-processor statements, via #define. If constants are defined as C
constants the name of the constant shall start with k, followed by the constant name in Pascal
case. If a constant is defined as a pre-processor statement the constant name shall be all up-
per case, separating multiple words with underscored. Avoid the using “magic numbers” (e.g.
if (x == 3){...}). Instead use constants.

Examples

static int g_global_variable;

static const int g_kAGlobalConstant = 73:

const int kAnImportantConstant = 42;

#define DO_NOT_DO_THIS_IF_IT_IS_NOT_NECESSARY bad

4.4 Functions

Functions names shall be Pascal cased, function parameters shall be named like variables. The
parameter list shall adhere to the following rules:

¢ Input parameters shall come first
¢ Input parameters shall be const

* Qutput parameters shall be last

Examples

int FooBar(const int foo, const char* const bar, doublex additional_return_value)

4.5 Structs

The default case for structs shall be, that they are defined as anonymous structs, giving them
a type name via the typedef keyword. Struct names shall be pascal cased. If a struct type is
needed, before a typedef alias can be created (usually inside the same struct), the struct name
shall be repeated in the struct type name, following the conventions for variable names, with all
lowercase and words separated with underscores.

The element names inside the struct are following the normal conventions for their types.

Examples

typedef struct {
int foo;
char bar;

} TheDefaultCase;

typedef the_excpetion {
struct the_exection *needed_the_struct_definition_already_here;
char other_elements;

} TheException;

4.6 Enums

Enums shall be defined anonymous and typedef’ed to a type name. As the values inside an enum
are constant, the naming scheme of constants apply for enum members. As Enums do not define
their own namespace, the enum type name shall be added between the initial k and the constant
name.

Examples

typedef enum {
kImportantEnumConstantl
kImportantEnumConstant2
} ImportantEnum;

= o

5 Code Formatting

In order to have consistent code formating the Google C++ coding style rules shall apply. When
using Eclipse as development environment the coding format xml file is available at https:
//github.com/google/styleguide. By pressing <ctrl><shift>f the formatter will format the
code according to these rules.

6 Assertions

The OPENER_ASSERT(e) macro is available for traditional assertion checks, halting the program if
the expression provided as the argument e evaluates false. This macro shall only be used to test
conditions where the only possible cause of failure is an unquestionable bug with this program,
typically leading to undefined behavior or a crash if execution were permitted to continue. In
other words, an assertion shall never fail as a result of any external input, valid or invalid, or other
similar foreseeable condition, such as a memory allocation failure. These latter type of failures
must be handled by normal code execution paths that yield responses with appropriate error
codes or possibly terminating the program with a non-zero exit code, not an assertion failure.

The following listing of a function to set an attribute’s value based on received data is an
example to help illustrate proper use of assertions. The raw and len parameters refer to the received
data and length, and the foo parameter points to the target attribute; the function returns true only
if the attribute was set successfully.

bool SetAttributeFoo (const void *raw, size_t len, CipDint +foo) {

/*

* This function should never be called with NULL pointers, regardless of
* what was received over the network, so assertions should be used to

* validate the pointer arguments.

*/

OPENER_ASSERT(NULL != raw);

OPENER_ASSERT(NULL != foo);

/*

https://github.com/google/styleguide
https://github.com/google/styleguide

* Ensuring enough data was received to satisfy the target data type
* must not be done with an assertion as a malformed message containing
* insufficient data shall not halt the program.
*
/
if (sizeof(CipDint) > len) ({
return false;

}

CipDint new_value = &(int *)raw;

* Here the received wvalue is tested for conformance to acceptable values;
= assume for the sake of this example that allowable values are nonzero.
* Validating values received from external sources must not be done

* with assertions.

if (0 == new_value) {
return false;

}

»foo = new_value;
return true;

	Introduction
	Comments
	Fileheaders
	Revision History
	Keywords

	Datatypes
	Naming of Identifiers
	Pre- & Postfixes
	Variables
	Constants
	Functions
	Structs
	Enums

	Code Formatting
	Assertions

