/****************************************************************************** * @file matrix_functions_f16.h * @brief Public header file for NMSIS DSP Library * @version V1.10.0 * @date 08 July 2021 * Target Processor: RISC-V Cores ******************************************************************************/ /* * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. * Copyright (c) 2019 Nuclei Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef MATRIX_FUNCTIONS_F16_H_ #define MATRIX_FUNCTIONS_F16_H_ #ifdef __cplusplus extern "C" { #endif #include "riscv_math_types_f16.h" #include "riscv_math_memory.h" #include "dsp/none.h" #include "dsp/utils.h" #if defined(RISCV_FLOAT16_SUPPORTED) #define DEFAULT_HOUSEHOLDER_THRESHOLD_F16 (1.0e-3f) /** * @brief Instance structure for the floating-point matrix structure. */ typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ float16_t *pData; /**< points to the data of the matrix. */ } riscv_matrix_instance_f16; /** * @brief Floating-point matrix addition. * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. */ riscv_status riscv_mat_add_f16( const riscv_matrix_instance_f16 * pSrcA, const riscv_matrix_instance_f16 * pSrcB, riscv_matrix_instance_f16 * pDst); /** * @brief Floating-point, complex, matrix multiplication. * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. */ riscv_status riscv_mat_cmplx_mult_f16( const riscv_matrix_instance_f16 * pSrcA, const riscv_matrix_instance_f16 * pSrcB, riscv_matrix_instance_f16 * pDst); /** * @brief Floating-point matrix transpose. * @param[in] pSrc points to the input matrix * @param[out] pDst points to the output matrix * @return The function returns either RISCV_MATH_SIZE_MISMATCH * or RISCV_MATH_SUCCESS based on the outcome of size checking. */ riscv_status riscv_mat_trans_f16( const riscv_matrix_instance_f16 * pSrc, riscv_matrix_instance_f16 * pDst); /** * @brief Floating-point complex matrix transpose. * @param[in] pSrc points to the input matrix * @param[out] pDst points to the output matrix * @return The function returns either RISCV_MATH_SIZE_MISMATCH * or RISCV_MATH_SUCCESS based on the outcome of size checking. */ riscv_status riscv_mat_cmplx_trans_f16( const riscv_matrix_instance_f16 * pSrc, riscv_matrix_instance_f16 * pDst); /** * @brief Floating-point matrix multiplication * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. */ riscv_status riscv_mat_mult_f16( const riscv_matrix_instance_f16 * pSrcA, const riscv_matrix_instance_f16 * pSrcB, riscv_matrix_instance_f16 * pDst); /** * @brief Floating-point matrix and vector multiplication * @param[in] pSrcMat points to the input matrix structure * @param[in] pVec points to vector * @param[out] pDst points to output vector */ void riscv_mat_vec_mult_f16( const riscv_matrix_instance_f16 *pSrcMat, const float16_t *pVec, float16_t *pDst); /** * @brief Floating-point matrix subtraction * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. */ riscv_status riscv_mat_sub_f16( const riscv_matrix_instance_f16 * pSrcA, const riscv_matrix_instance_f16 * pSrcB, riscv_matrix_instance_f16 * pDst); /** * @brief Floating-point matrix scaling. * @param[in] pSrc points to the input matrix * @param[in] scale scale factor * @param[out] pDst points to the output matrix * @return The function returns either * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. */ riscv_status riscv_mat_scale_f16( const riscv_matrix_instance_f16 * pSrc, float16_t scale, riscv_matrix_instance_f16 * pDst); /** * @brief Floating-point matrix initialization. * @param[in,out] S points to an instance of the floating-point matrix structure. * @param[in] nRows number of rows in the matrix. * @param[in] nColumns number of columns in the matrix. * @param[in] pData points to the matrix data array. */ void riscv_mat_init_f16( riscv_matrix_instance_f16 * S, uint16_t nRows, uint16_t nColumns, float16_t * pData); /** * @brief Floating-point matrix inverse. * @param[in] src points to the instance of the input floating-point matrix structure. * @param[out] dst points to the instance of the output floating-point matrix structure. * @return The function returns RISCV_MATH_SIZE_MISMATCH, if the dimensions do not match. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status RISCV_MATH_SINGULAR. */ riscv_status riscv_mat_inverse_f16( const riscv_matrix_instance_f16 * src, riscv_matrix_instance_f16 * dst); /** * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix. * @param[in] src points to the instance of the input floating-point matrix structure. * @param[out] dst points to the instance of the output floating-point matrix structure. * @return The function returns RISCV_MATH_SIZE_MISMATCH, if the dimensions do not match. * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status RISCV_MATH_DECOMPOSITION_FAILURE. * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition. * The decomposition is returning a lower triangular matrix. */ riscv_status riscv_mat_cholesky_f16( const riscv_matrix_instance_f16 * src, riscv_matrix_instance_f16 * dst); /** * @brief Solve UT . X = A where UT is an upper triangular matrix * @param[in] ut The upper triangular matrix * @param[in] a The matrix a * @param[out] dst The solution X of UT . X = A * @return The function returns RISCV_MATH_SINGULAR, if the system can't be solved. */ riscv_status riscv_mat_solve_upper_triangular_f16( const riscv_matrix_instance_f16 * ut, const riscv_matrix_instance_f16 * a, riscv_matrix_instance_f16 * dst); /** * @brief Solve LT . X = A where LT is a lower triangular matrix * @param[in] lt The lower triangular matrix * @param[in] a The matrix a * @param[out] dst The solution X of LT . X = A * @return The function returns RISCV_MATH_SINGULAR, if the system can't be solved. */ riscv_status riscv_mat_solve_lower_triangular_f16( const riscv_matrix_instance_f16 * lt, const riscv_matrix_instance_f16 * a, riscv_matrix_instance_f16 * dst); /** @brief QR decomposition of a m x n floating point matrix with m >= n. @param[in] pSrc points to input matrix structure. The source matrix is modified by the function. @param[in] threshold norm2 threshold. @param[out] pOutR points to output R matrix structure of dimension m x n @param[out] pOutQ points to output Q matrix structure of dimension m x m @param[out] pOutTau points to Householder scaling factors of dimension n @param[inout] pTmpA points to a temporary vector of dimension m. @param[inout] pTmpB points to a temporary vector of dimension n. @return execution status - \ref RISCV_MATH_SUCCESS : Operation successful - \ref RISCV_MATH_SIZE_MISMATCH : Matrix size check failed - \ref RISCV_MATH_SINGULAR : Input matrix is found to be singular (non-invertible) */ riscv_status riscv_mat_qr_f16( const riscv_matrix_instance_f16 * pSrc, const float16_t threshold, riscv_matrix_instance_f16 * pOutR, riscv_matrix_instance_f16 * pOutQ, float16_t * pOutTau, float16_t *pTmpA, float16_t *pTmpB ); /** @brief Householder transform of a half floating point vector. @param[in] pSrc points to the input vector. @param[in] threshold norm2 threshold. @param[in] blockSize dimension of the vector space. @param[outQ] pOut points to the output vector. @return beta return the scaling factor beta */ float16_t riscv_householder_f16( const float16_t * pSrc, const float16_t threshold, uint32_t blockSize, float16_t * pOut ); #endif /*defined(RISCV_FLOAT16_SUPPORTED)*/ #ifdef __cplusplus } #endif #endif /* ifndef _MATRIX_FUNCTIONS_F16_H_ */