| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- /*
- * Copyright (c) 2019 Nuclei Limited. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #ifndef __CORE_FEATURE_FPU_H__
- #define __CORE_FEATURE_FPU_H__
- /*!
- * @file core_feature_fpu.h
- * @brief FPU feature API header file for Nuclei N/NX Core
- */
- /*
- * FPU Feature Configuration Macro:
- * 1. __FPU_PRESENT: Define whether Floating Point Unit(FPU) is present or not
- * * 0: Not present
- * * 1: Single precision FPU present, __RISCV_FLEN == 32
- * * 2: Double precision FPU present, __RISCV_FLEN == 64
- */
- #ifdef __cplusplus
- extern "C" {
- #endif
- #include "core_feature_base.h"
- /* ===== FPU Operations ===== */
- /**
- * \defgroup NMSIS_Core_FPU_Functions FPU Functions
- * \ingroup NMSIS_Core
- * \brief Functions that related to the RISC-V FPU (F and D extension).
- * \details
- *
- * Nuclei provided floating point unit by RISC-V F and D extension.
- * * `F extension` adds single-precision floating-point computational
- * instructions compliant with the IEEE 754-2008 arithmetic standard, __RISCV_FLEN = 32.
- * The F extension adds 32 floating-point registers, f0-f31, each 32 bits wide,
- * and a floating-point control and status register fcsr, which contains the
- * operating mode and exception status of the floating-point unit.
- * * `D extension` adds double-precision floating-point computational instructions
- * compliant with the IEEE 754-2008 arithmetic standard.
- * The D extension widens the 32 floating-point registers, f0-f31, to 64 bits, __RISCV_FLEN = 64
- * @{
- */
- #if defined(__FPU_PRESENT) && (__FPU_PRESENT > 0)
- #if __FPU_PRESENT == 1
- /** \brief Refer to the width of the floating point register in bits(either 32 or 64) */
- #define __RISCV_FLEN 32
- #elif __FPU_PRESENT == 2
- #define __RISCV_FLEN 64
- #else
- #define __RISCV_FLEN __riscv_flen
- #endif /* __FPU_PRESENT == 1 */
- /** \brief Get FCSR CSR Register */
- #define __get_FCSR() __RV_CSR_READ(CSR_FCSR)
- /** \brief Set FCSR CSR Register with val */
- #define __set_FCSR(val) __RV_CSR_WRITE(CSR_FCSR, (val))
- /** \brief Get FRM CSR Register */
- #define __get_FRM() __RV_CSR_READ(CSR_FRM)
- /** \brief Set FRM CSR Register with val */
- #define __set_FRM(val) __RV_CSR_WRITE(CSR_FRM, (val))
- /** \brief Get FFLAGS CSR Register */
- #define __get_FFLAGS() __RV_CSR_READ(CSR_FFLAGS)
- /** \brief Set FFLAGS CSR Register with val */
- #define __set_FFLAGS(val) __RV_CSR_WRITE(CSR_FFLAGS, (val))
- /** \brief Enable FPU Unit, and set state to initial */
- #define __enable_FPU() { __RV_CSR_CLEAR(CSR_MSTATUS, MSTATUS_FS); \
- __RV_CSR_SET(CSR_MSTATUS, MSTATUS_FS_INITIAL); \
- }
- /**
- * \brief Disable FPU Unit
- * \details
- * * We can save power by disable FPU Unit.
- * * When FPU Unit is disabled, any access to FPU related CSR registers
- * and FPU instructions will cause illegal Instuction Exception.
- * */
- #define __disable_FPU() __RV_CSR_CLEAR(CSR_MSTATUS, MSTATUS_FS)
- /**
- * \brief Load a single-precision value from memory into float point register freg using flw instruction
- * \details The FLW instruction loads a single-precision floating point value from memory
- * address (addr + ofs) into floating point register freg(f0-f31)
- * \param [in] freg The floating point register, eg. FREG(0), f0
- * \param [in] addr The memory base address, 4 byte aligned required
- * \param [in] ofs a 12-bit immediate signed byte offset value, should be an const value
- * \remarks
- * * FLW and FSW operations need to make sure the address is 4 bytes aligned,
- * otherwise it will cause exception code 4(Load address misaligned) or 6 (Store/AMO address misaligned)
- * * FLW and FSW do not modify the bits being transferred; in particular, the payloads of non-canonical
- * NaNs are preserved
- *
- */
- #define __RV_FLW(freg, addr, ofs) \
- ({ \
- rv_csr_t __addr = (rv_csr_t)(addr); \
- __ASM volatile("flw " STRINGIFY(freg) ", %0(%1) " \
- : : "I"(ofs), "r"(__addr) \
- : "memory"); \
- })
- /**
- * \brief Store a single-precision value from float point freg into memory using fsw instruction
- * \details The FSW instruction stores a single-precision value from floating point register to memory
- * \param [in] freg The floating point register(f0-f31), eg. FREG(0), f0
- * \param [in] addr The memory base address, 4 byte aligned required
- * \param [in] ofs a 12-bit immediate signed byte offset value, should be an const value
- * \remarks
- * * FLW and FSW operations need to make sure the address is 4 bytes aligned,
- * otherwise it will cause exception code 4(Load address misaligned) or 6 (Store/AMO address misaligned)
- * * FLW and FSW do not modify the bits being transferred; in particular, the payloads of non-canonical
- * NaNs are preserved
- *
- */
- #define __RV_FSW(freg, addr, ofs) \
- ({ \
- rv_csr_t __addr = (rv_csr_t)(addr); \
- __ASM volatile("fsw " STRINGIFY(freg) ", %0(%1) " \
- : : "I"(ofs), "r"(__addr) \
- : "memory"); \
- })
- /**
- * \brief Load a double-precision value from memory into float point register freg using fld instruction
- * \details The FLD instruction loads a double-precision floating point value from memory
- * address (addr + ofs) into floating point register freg(f0-f31)
- * \param [in] freg The floating point register, eg. FREG(0), f0
- * \param [in] addr The memory base address, 8 byte aligned required
- * \param [in] ofs a 12-bit immediate signed byte offset value, should be an const value
- * \attention
- * * Function only available for double precision floating point unit, FLEN = 64
- * \remarks
- * * FLD and FSD operations need to make sure the address is 8 bytes aligned,
- * otherwise it will cause exception code 4(Load address misaligned) or 6 (Store/AMO address misaligned)
- * * FLD and FSD do not modify the bits being transferred; in particular, the payloads of non-canonical
- * NaNs are preserved.
- */
- #define __RV_FLD(freg, addr, ofs) \
- ({ \
- rv_csr_t __addr = (rv_csr_t)(addr); \
- __ASM volatile("fld " STRINGIFY(freg) ", %0(%1) " \
- : : "I"(ofs), "r"(__addr) \
- : "memory"); \
- })
- /**
- * \brief Store a double-precision value from float point freg into memory using fsd instruction
- * \details The FSD instruction stores double-precision value from floating point register to memory
- * \param [in] freg The floating point register(f0-f31), eg. FREG(0), f0
- * \param [in] addr The memory base address, 8 byte aligned required
- * \param [in] ofs a 12-bit immediate signed byte offset value, should be an const value
- * \attention
- * * Function only available for double precision floating point unit, FLEN = 64
- * \remarks
- * * FLD and FSD operations need to make sure the address is 8 bytes aligned,
- * otherwise it will cause exception code 4(Load address misaligned) or 6 (Store/AMO address misaligned)
- * * FLD and FSD do not modify the bits being transferred; in particular, the payloads of non-canonical
- * NaNs are preserved.
- *
- */
- #define __RV_FSD(freg, addr, ofs) \
- ({ \
- rv_csr_t __addr = (rv_csr_t)(addr); \
- __ASM volatile("fsd " STRINGIFY(freg) ", %0(%1) " \
- : : "I"(ofs), "r"(__addr) \
- : "memory"); \
- })
- /**
- * \def __RV_FLOAD
- * \brief Load a float point value from memory into float point register freg using flw/fld instruction
- * \details
- * * For Single-Precison Floating-Point Mode(__FPU_PRESENT == 1, __RISCV_FLEN == 32):
- * It will call \ref __RV_FLW to load a single-precision floating point value from memory to floating point register
- * * For Double-Precison Floating-Point Mode(__FPU_PRESENT == 2, __RISCV_FLEN == 64):
- * It will call \ref __RV_FLD to load a double-precision floating point value from memory to floating point register
- *
- * \attention
- * Function behaviour is different for __FPU_PRESENT = 1 or 2, please see the real function this macro represent
- */
- /**
- * \def __RV_FSTORE
- * \brief Store a float value from float point freg into memory using fsw/fsd instruction
- * \details
- * * For Single-Precison Floating-Point Mode(__FPU_PRESENT == 1, __RISCV_FLEN == 32):
- * It will call \ref __RV_FSW to store floating point register into memory
- * * For Double-Precison Floating-Point Mode(__FPU_PRESENT == 2, __RISCV_FLEN == 64):
- * It will call \ref __RV_FSD to store floating point register into memory
- *
- * \attention
- * Function behaviour is different for __FPU_PRESENT = 1 or 2, please see the real function this macro represent
- */
- #if __FPU_PRESENT == 1
- #define __RV_FLOAD __RV_FLW
- #define __RV_FSTORE __RV_FSW
- /** \brief Type of FPU register, depends on the FLEN defined in RISC-V */
- typedef uint32_t rv_fpu_t;
- #elif __FPU_PRESENT == 2
- #define __RV_FLOAD __RV_FLD
- #define __RV_FSTORE __RV_FSD
- /** \brief Type of FPU register, depends on the FLEN defined in RISC-V */
- typedef uint64_t rv_fpu_t;
- #endif /* __FPU_PRESENT == 2 */
- /**
- * \brief Save FPU context into variables for interrupt nesting
- * \details
- * This macro is used to declare variables which are used for saving
- * FPU context, and it will store the nessary fpu registers into
- * these variables, it need to be used in a interrupt when in this
- * interrupt fpu registers are used.
- * \remarks
- * - It need to be used together with \ref RESTORE_FPU_CONTEXT
- * - Don't use variable names __fpu_context in your ISR code
- * - If you isr code will use fpu registers, and this interrupt is nested.
- * Then you can do it like this:
- * \code
- * void eclic_mtip_handler(void)
- * {
- * // !!!Interrupt is enabled here!!!
- * // !!!Higher priority interrupt could nest it!!!
- *
- * // Necessary only when you need to use fpu registers
- * // in this isr handler functions
- * SAVE_FPU_CONTEXT();
- *
- * // put you own interrupt handling code here
- *
- * // pair of SAVE_FPU_CONTEXT()
- * RESTORE_FPU_CONTEXT();
- * }
- * \endcode
- */
- #define SAVE_FPU_CONTEXT() \
- rv_fpu_t __fpu_context[20]; \
- __RV_FSTORE(FREG(0), __fpu_context, 0 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(1), __fpu_context, 1 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(2), __fpu_context, 2 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(3), __fpu_context, 3 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(4), __fpu_context, 4 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(5), __fpu_context, 5 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(6), __fpu_context, 6 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(7), __fpu_context, 7 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(10), __fpu_context, 8 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(11), __fpu_context, 9 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(12), __fpu_context, 10 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(13), __fpu_context, 11 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(14), __fpu_context, 12 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(15), __fpu_context, 13 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(16), __fpu_context, 14 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(17), __fpu_context, 15 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(28), __fpu_context, 16 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(29), __fpu_context, 17 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(30), __fpu_context, 18 << LOG_FPREGBYTES); \
- __RV_FSTORE(FREG(31), __fpu_context, 19 << LOG_FPREGBYTES);
- /**
- * \brief Restore necessary fpu registers from variables for interrupt nesting
- * \details
- * This macro is used restore necessary fpu registers from pre-defined variables
- * in \ref SAVE_FPU_CONTEXT macro.
- * \remarks
- * - It need to be used together with \ref SAVE_FPU_CONTEXT
- */
- #define RESTORE_FPU_CONTEXT() \
- __RV_FLOAD(FREG(0), __fpu_context, 0 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(1), __fpu_context, 1 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(2), __fpu_context, 2 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(3), __fpu_context, 3 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(4), __fpu_context, 4 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(5), __fpu_context, 5 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(6), __fpu_context, 6 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(7), __fpu_context, 7 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(10), __fpu_context, 8 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(11), __fpu_context, 9 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(12), __fpu_context, 10 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(13), __fpu_context, 11 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(14), __fpu_context, 12 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(15), __fpu_context, 13 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(16), __fpu_context, 14 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(17), __fpu_context, 15 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(28), __fpu_context, 16 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(29), __fpu_context, 17 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(30), __fpu_context, 18 << LOG_FPREGBYTES); \
- __RV_FLOAD(FREG(31), __fpu_context, 19 << LOG_FPREGBYTES);
- #else
- #define SAVE_FPU_CONTEXT()
- #define RESTORE_FPU_CONTEXT()
- #endif /* __FPU_PRESENT > 0 */
- /** @} */ /* End of Doxygen Group NMSIS_Core_FPU_Functions */
- #ifdef __cplusplus
- }
- #endif
- #endif /* __CORE_FEATURE_FPU_H__ */
|