| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- /******************************************************************************
- * @file bayes_functions.h
- * @brief Public header file for NMSIS DSP Library
- * @version V1.10.0
- * @date 08 July 2021
- * Target Processor: RISC-V Cores
- ******************************************************************************/
- /*
- * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
- * Copyright (c) 2019 Nuclei Limited. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef BAYES_FUNCTIONS_H_
- #define BAYES_FUNCTIONS_H_
- #include "riscv_math_types.h"
- #include "riscv_math_memory.h"
- #include "dsp/none.h"
- #include "dsp/utils.h"
- #include "dsp/statistics_functions.h"
- /**
- * @defgroup groupBayes Bayesian estimators
- *
- * Implement the naive gaussian Bayes estimator.
- * The training must be done from scikit-learn.
- *
- * The parameters can be easily
- * generated from the scikit-learn object. Some examples are given in
- * DSP/Testing/PatternGeneration/Bayes.py
- */
- #ifdef __cplusplus
- extern "C"
- {
- #endif
- /**
- * @brief Instance structure for Naive Gaussian Bayesian estimator.
- */
- typedef struct
- {
- uint32_t vectorDimension; /**< Dimension of vector space */
- uint32_t numberOfClasses; /**< Number of different classes */
- const float32_t *theta; /**< Mean values for the Gaussians */
- const float32_t *sigma; /**< Variances for the Gaussians */
- const float32_t *classPriors; /**< Class prior probabilities */
- float32_t epsilon; /**< Additive value to variances */
- } riscv_gaussian_naive_bayes_instance_f32;
- /**
- * @brief Naive Gaussian Bayesian Estimator
- *
- * @param[in] S points to a naive bayes instance structure
- * @param[in] in points to the elements of the input vector.
- * @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities
- * @param[out] *pBufferB points to a temporary buffer of length numberOfClasses
- * @return The predicted class
- */
- uint32_t riscv_gaussian_naive_bayes_predict_f32(const riscv_gaussian_naive_bayes_instance_f32 *S,
- const float32_t * in,
- float32_t *pOutputProbabilities,
- float32_t *pBufferB);
- #ifdef __cplusplus
- }
- #endif
- #endif /* ifndef _BAYES_FUNCTIONS_H_ */
|