aes.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. /*
  2. This is an implementation of the AES algorithm, specifically ECB, CTR and CBC
  3. mode. Block size can be chosen in aes.h - available choices are AES128, AES192,
  4. AES256.
  5. The implementation is verified against the test vectors in:
  6. National Institute of Standards and Technology Special Publication 800-38A
  7. 2001 ED
  8. ECB-AES128
  9. ----------
  10. plain-text:
  11. 6bc1bee22e409f96e93d7e117393172a
  12. ae2d8a571e03ac9c9eb76fac45af8e51
  13. 30c81c46a35ce411e5fbc1191a0a52ef
  14. f69f2445df4f9b17ad2b417be66c3710
  15. key:
  16. 2b7e151628aed2a6abf7158809cf4f3c
  17. resulting cipher
  18. 3ad77bb40d7a3660a89ecaf32466ef97
  19. f5d3d58503b9699de785895a96fdbaaf
  20. 43b1cd7f598ece23881b00e3ed030688
  21. 7b0c785e27e8ad3f8223207104725dd4
  22. NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
  23. You should pad the end of the string with zeros if this is not the case.
  24. For AES192/256 the key size is proportionally larger.
  25. */
  26. /*****************************************************************************/
  27. /* Includes: */
  28. /*****************************************************************************/
  29. #include "aes.h"
  30. #include <string.h> // CBC mode, for memset
  31. /*****************************************************************************/
  32. /* Defines: */
  33. /*****************************************************************************/
  34. // The number of columns comprising a state in AES. This is a constant in AES.
  35. // Value=4
  36. #define Nb 4
  37. #if defined(AES256) && (AES256 == 1)
  38. #define Nk 8
  39. #define Nr 14
  40. #elif defined(AES192) && (AES192 == 1)
  41. #define Nk 6
  42. #define Nr 12
  43. #else
  44. #define Nk 4 // The number of 32 bit words in a key.
  45. #define Nr 10 // The number of rounds in AES Cipher.
  46. #endif
  47. // jcallan@github points out that declaring Multiply as a function
  48. // reduces code size considerably with the Keil ARM compiler.
  49. // See this link for more information:
  50. // https://github.com/kokke/tiny-AES-C/pull/3
  51. #ifndef MULTIPLY_AS_A_FUNCTION
  52. #define MULTIPLY_AS_A_FUNCTION 0
  53. #endif
  54. /*****************************************************************************/
  55. /* Private variables: */
  56. /*****************************************************************************/
  57. // state - array holding the intermediate results during decryption.
  58. typedef uint8_t state_t[4][4];
  59. // The lookup-tables are marked const so they can be placed in read-only storage
  60. // instead of RAM The numbers below can be computed dynamically trading ROM for
  61. // RAM - This can be useful in (embedded) bootloader applications, where ROM is
  62. // often limited.
  63. static const uint8_t sbox[256] = {
  64. // 0 1 2 3 4 5 6 7 8 9 A B C
  65. // D E F
  66. 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
  67. 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
  68. 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
  69. 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  70. 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
  71. 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
  72. 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
  73. 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  74. 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
  75. 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
  76. 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
  77. 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  78. 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
  79. 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
  80. 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
  81. 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  82. 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
  83. 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
  84. 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
  85. 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  86. 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
  87. 0xb0, 0x54, 0xbb, 0x16};
  88. #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
  89. static const uint8_t rsbox[256] = {
  90. 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e,
  91. 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
  92. 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32,
  93. 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  94. 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49,
  95. 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
  96. 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50,
  97. 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  98. 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05,
  99. 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
  100. 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
  101. 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  102. 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8,
  103. 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
  104. 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b,
  105. 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  106. 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59,
  107. 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
  108. 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d,
  109. 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  110. 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63,
  111. 0x55, 0x21, 0x0c, 0x7d};
  112. #endif
  113. // The round constant word array, Rcon[i], contains the values given by
  114. // x to the power (i-1) being powers of x (x is denoted as {02}) in the field
  115. // GF(2^8)
  116. static const uint8_t Rcon[11] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10,
  117. 0x20, 0x40, 0x80, 0x1b, 0x36};
  118. /*
  119. * Jordan Goulder points out in PR #12
  120. * (https://github.com/kokke/tiny-AES-C/pull/12), that you can remove most of
  121. * the elements in the Rcon array, because they are unused.
  122. *
  123. * From Wikipedia's article on the Rijndael key schedule @
  124. * https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
  125. *
  126. * "Only the first some of these constants are actually used – up to rcon[10]
  127. * for AES-128 (as 11 round keys are needed), up to rcon[8] for AES-192, up to
  128. * rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
  129. */
  130. /*****************************************************************************/
  131. /* Private functions: */
  132. /*****************************************************************************/
  133. /*
  134. static uint8_t getSBoxValue(uint8_t num)
  135. {
  136. return sbox[num];
  137. }
  138. */
  139. #define getSBoxValue(num) (sbox[(num)])
  140. // This function produces Nb(Nr+1) round keys. The round keys are used in each
  141. // round to decrypt the states.
  142. static void KeyExpansion(uint8_t *RoundKey, const uint8_t *Key)
  143. {
  144. unsigned i, j, k;
  145. uint8_t tempa[4]; // Used for the column/row operations
  146. // The first round key is the key itself.
  147. for (i = 0; i < Nk; ++i) {
  148. RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
  149. RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
  150. RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
  151. RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
  152. }
  153. // All other round keys are found from the previous round keys.
  154. for (i = Nk; i < Nb * (Nr + 1); ++i) {
  155. {
  156. k = (i - 1) * 4;
  157. tempa[0] = RoundKey[k + 0];
  158. tempa[1] = RoundKey[k + 1];
  159. tempa[2] = RoundKey[k + 2];
  160. tempa[3] = RoundKey[k + 3];
  161. }
  162. if (i % Nk == 0) {
  163. // This function shifts the 4 bytes in a word to the left once.
  164. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
  165. // Function RotWord()
  166. {
  167. const uint8_t u8tmp = tempa[0];
  168. tempa[0] = tempa[1];
  169. tempa[1] = tempa[2];
  170. tempa[2] = tempa[3];
  171. tempa[3] = u8tmp;
  172. }
  173. // SubWord() is a function that takes a four-byte input word and
  174. // applies the S-box to each of the four bytes to produce an output
  175. // word.
  176. // Function Subword()
  177. {
  178. tempa[0] = getSBoxValue(tempa[0]);
  179. tempa[1] = getSBoxValue(tempa[1]);
  180. tempa[2] = getSBoxValue(tempa[2]);
  181. tempa[3] = getSBoxValue(tempa[3]);
  182. }
  183. tempa[0] = tempa[0] ^ Rcon[i / Nk];
  184. }
  185. #if defined(AES256) && (AES256 == 1)
  186. if (i % Nk == 4) {
  187. // Function Subword()
  188. {
  189. tempa[0] = getSBoxValue(tempa[0]);
  190. tempa[1] = getSBoxValue(tempa[1]);
  191. tempa[2] = getSBoxValue(tempa[2]);
  192. tempa[3] = getSBoxValue(tempa[3]);
  193. }
  194. }
  195. #endif
  196. j = i * 4;
  197. k = (i - Nk) * 4;
  198. RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
  199. RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
  200. RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
  201. RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
  202. }
  203. }
  204. void AES_init_ctx(struct AES_ctx *ctx, const uint8_t *key)
  205. {
  206. KeyExpansion(ctx->RoundKey, key);
  207. }
  208. #if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
  209. void AES_init_ctx_iv(struct AES_ctx *ctx, const uint8_t *key, const uint8_t *iv)
  210. {
  211. KeyExpansion(ctx->RoundKey, key);
  212. memcpy(ctx->Iv, iv, AES_BLOCKLEN);
  213. }
  214. void AES_ctx_set_iv(struct AES_ctx *ctx, const uint8_t *iv)
  215. {
  216. memcpy(ctx->Iv, iv, AES_BLOCKLEN);
  217. }
  218. #endif
  219. // This function adds the round key to state.
  220. // The round key is added to the state by an XOR function.
  221. static void AddRoundKey(uint8_t round, state_t *state, const uint8_t *RoundKey)
  222. {
  223. uint8_t i, j;
  224. for (i = 0; i < 4; ++i) {
  225. for (j = 0; j < 4; ++j) {
  226. (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
  227. }
  228. }
  229. }
  230. // The SubBytes Function Substitutes the values in the
  231. // state matrix with values in an S-box.
  232. static void SubBytes(state_t *state)
  233. {
  234. uint8_t i, j;
  235. for (i = 0; i < 4; ++i) {
  236. for (j = 0; j < 4; ++j) {
  237. (*state)[j][i] = getSBoxValue((*state)[j][i]);
  238. }
  239. }
  240. }
  241. // The ShiftRows() function shifts the rows in the state to the left.
  242. // Each row is shifted with different offset.
  243. // Offset = Row number. So the first row is not shifted.
  244. static void ShiftRows(state_t *state)
  245. {
  246. uint8_t temp;
  247. // Rotate first row 1 columns to left
  248. temp = (*state)[0][1];
  249. (*state)[0][1] = (*state)[1][1];
  250. (*state)[1][1] = (*state)[2][1];
  251. (*state)[2][1] = (*state)[3][1];
  252. (*state)[3][1] = temp;
  253. // Rotate second row 2 columns to left
  254. temp = (*state)[0][2];
  255. (*state)[0][2] = (*state)[2][2];
  256. (*state)[2][2] = temp;
  257. temp = (*state)[1][2];
  258. (*state)[1][2] = (*state)[3][2];
  259. (*state)[3][2] = temp;
  260. // Rotate third row 3 columns to left
  261. temp = (*state)[0][3];
  262. (*state)[0][3] = (*state)[3][3];
  263. (*state)[3][3] = (*state)[2][3];
  264. (*state)[2][3] = (*state)[1][3];
  265. (*state)[1][3] = temp;
  266. }
  267. static uint8_t xtime(uint8_t x) { return ((x << 1) ^ (((x >> 7) & 1) * 0x1b)); }
  268. // MixColumns function mixes the columns of the state matrix
  269. static void MixColumns(state_t *state)
  270. {
  271. uint8_t i;
  272. uint8_t Tmp, Tm, t;
  273. for (i = 0; i < 4; ++i) {
  274. t = (*state)[i][0];
  275. Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
  276. Tm = (*state)[i][0] ^ (*state)[i][1];
  277. Tm = xtime(Tm);
  278. (*state)[i][0] ^= Tm ^ Tmp;
  279. Tm = (*state)[i][1] ^ (*state)[i][2];
  280. Tm = xtime(Tm);
  281. (*state)[i][1] ^= Tm ^ Tmp;
  282. Tm = (*state)[i][2] ^ (*state)[i][3];
  283. Tm = xtime(Tm);
  284. (*state)[i][2] ^= Tm ^ Tmp;
  285. Tm = (*state)[i][3] ^ t;
  286. Tm = xtime(Tm);
  287. (*state)[i][3] ^= Tm ^ Tmp;
  288. }
  289. }
  290. // Multiply is used to multiply numbers in the field GF(2^8)
  291. // Note: The last call to xtime() is unneeded, but often ends up generating a
  292. // smaller binary
  293. // The compiler seems to be able to vectorize the operation better this
  294. // way. See https://github.com/kokke/tiny-AES-c/pull/34
  295. #if MULTIPLY_AS_A_FUNCTION
  296. static uint8_t Multiply(uint8_t x, uint8_t y)
  297. {
  298. return (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^
  299. ((y >> 2 & 1) * xtime(xtime(x))) ^
  300. ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^
  301. ((y >> 4 & 1) *
  302. xtime(xtime(xtime(
  303. xtime(x)))))); /* this last call to xtime() can be omitted */
  304. }
  305. #else
  306. #define Multiply(x, y) \
  307. (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ \
  308. ((y >> 2 & 1) * xtime(xtime(x))) ^ \
  309. ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ \
  310. ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x))))))
  311. #endif
  312. #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
  313. /*
  314. static uint8_t getSBoxInvert(uint8_t num)
  315. {
  316. return rsbox[num];
  317. }
  318. */
  319. #define getSBoxInvert(num) (rsbox[(num)])
  320. // MixColumns function mixes the columns of the state matrix.
  321. // The method used to multiply may be difficult to understand for the
  322. // inexperienced. Please use the references to gain more information.
  323. static void InvMixColumns(state_t *state)
  324. {
  325. int i;
  326. uint8_t a, b, c, d;
  327. for (i = 0; i < 4; ++i) {
  328. a = (*state)[i][0];
  329. b = (*state)[i][1];
  330. c = (*state)[i][2];
  331. d = (*state)[i][3];
  332. (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^
  333. Multiply(c, 0x0d) ^ Multiply(d, 0x09);
  334. (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^
  335. Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
  336. (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^
  337. Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
  338. (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^
  339. Multiply(c, 0x09) ^ Multiply(d, 0x0e);
  340. }
  341. }
  342. // The SubBytes Function Substitutes the values in the
  343. // state matrix with values in an S-box.
  344. static void InvSubBytes(state_t *state)
  345. {
  346. uint8_t i, j;
  347. for (i = 0; i < 4; ++i) {
  348. for (j = 0; j < 4; ++j) {
  349. (*state)[j][i] = getSBoxInvert((*state)[j][i]);
  350. }
  351. }
  352. }
  353. static void InvShiftRows(state_t *state)
  354. {
  355. uint8_t temp;
  356. // Rotate first row 1 columns to right
  357. temp = (*state)[3][1];
  358. (*state)[3][1] = (*state)[2][1];
  359. (*state)[2][1] = (*state)[1][1];
  360. (*state)[1][1] = (*state)[0][1];
  361. (*state)[0][1] = temp;
  362. // Rotate second row 2 columns to right
  363. temp = (*state)[0][2];
  364. (*state)[0][2] = (*state)[2][2];
  365. (*state)[2][2] = temp;
  366. temp = (*state)[1][2];
  367. (*state)[1][2] = (*state)[3][2];
  368. (*state)[3][2] = temp;
  369. // Rotate third row 3 columns to right
  370. temp = (*state)[0][3];
  371. (*state)[0][3] = (*state)[1][3];
  372. (*state)[1][3] = (*state)[2][3];
  373. (*state)[2][3] = (*state)[3][3];
  374. (*state)[3][3] = temp;
  375. }
  376. #endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
  377. // Cipher is the main function that encrypts the PlainText.
  378. static void Cipher(state_t *state, const uint8_t *RoundKey)
  379. {
  380. uint8_t round = 0;
  381. // Add the First round key to the state before starting the rounds.
  382. AddRoundKey(0, state, RoundKey);
  383. // There will be Nr rounds.
  384. // The first Nr-1 rounds are identical.
  385. // These Nr rounds are executed in the loop below.
  386. // Last one without MixColumns()
  387. for (round = 1;; ++round) {
  388. SubBytes(state);
  389. ShiftRows(state);
  390. if (round == Nr) {
  391. break;
  392. }
  393. MixColumns(state);
  394. AddRoundKey(round, state, RoundKey);
  395. }
  396. // Add round key to last round
  397. AddRoundKey(Nr, state, RoundKey);
  398. }
  399. #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
  400. static void InvCipher(state_t *state, const uint8_t *RoundKey)
  401. {
  402. uint8_t round = 0;
  403. // Add the First round key to the state before starting the rounds.
  404. AddRoundKey(Nr, state, RoundKey);
  405. // There will be Nr rounds.
  406. // The first Nr-1 rounds are identical.
  407. // These Nr rounds are executed in the loop below.
  408. // Last one without InvMixColumn()
  409. for (round = (Nr - 1);; --round) {
  410. InvShiftRows(state);
  411. InvSubBytes(state);
  412. AddRoundKey(round, state, RoundKey);
  413. if (round == 0) {
  414. break;
  415. }
  416. InvMixColumns(state);
  417. }
  418. }
  419. #endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
  420. /*****************************************************************************/
  421. /* Public functions: */
  422. /*****************************************************************************/
  423. #if defined(ECB) && (ECB == 1)
  424. void AES_ECB_encrypt(const struct AES_ctx *ctx, uint8_t *buf)
  425. {
  426. // The next function call encrypts the PlainText with the Key using AES
  427. // algorithm.
  428. Cipher((state_t *)buf, ctx->RoundKey);
  429. }
  430. void AES_ECB_decrypt(const struct AES_ctx *ctx, uint8_t *buf)
  431. {
  432. // The next function call decrypts the PlainText with the Key using AES
  433. // algorithm.
  434. InvCipher((state_t *)buf, ctx->RoundKey);
  435. }
  436. #endif // #if defined(ECB) && (ECB == 1)
  437. #if defined(CBC) && (CBC == 1)
  438. static void XorWithIv(uint8_t *buf, const uint8_t *Iv)
  439. {
  440. uint8_t i;
  441. for (i = 0; i < AES_BLOCKLEN;
  442. ++i) // The block in AES is always 128bit no matter the key size
  443. {
  444. buf[i] ^= Iv[i];
  445. }
  446. }
  447. void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t *buf, size_t length)
  448. {
  449. size_t i;
  450. uint8_t *Iv = ctx->Iv;
  451. for (i = 0; i < length; i += AES_BLOCKLEN) {
  452. XorWithIv(buf, Iv);
  453. Cipher((state_t *)buf, ctx->RoundKey);
  454. Iv = buf;
  455. buf += AES_BLOCKLEN;
  456. }
  457. /* store Iv in ctx for next call */
  458. memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
  459. }
  460. void AES_CBC_decrypt_buffer(struct AES_ctx *ctx, uint8_t *buf, size_t length)
  461. {
  462. size_t i;
  463. uint8_t storeNextIv[AES_BLOCKLEN];
  464. for (i = 0; i < length; i += AES_BLOCKLEN) {
  465. memcpy(storeNextIv, buf, AES_BLOCKLEN);
  466. InvCipher((state_t *)buf, ctx->RoundKey);
  467. XorWithIv(buf, ctx->Iv);
  468. memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
  469. buf += AES_BLOCKLEN;
  470. }
  471. }
  472. #endif // #if defined(CBC) && (CBC == 1)
  473. #if defined(CTR) && (CTR == 1)
  474. /* Symmetrical operation: same function for encrypting as for decrypting. Note
  475. * any IV/nonce should never be reused with the same key */
  476. void AES_CTR_xcrypt_buffer(struct AES_ctx *ctx, uint8_t *buf, size_t length)
  477. {
  478. uint8_t buffer[AES_BLOCKLEN];
  479. size_t i;
  480. int bi;
  481. for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) {
  482. if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
  483. {
  484. memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
  485. Cipher((state_t *)buffer, ctx->RoundKey);
  486. /* Increment Iv and handle overflow */
  487. for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) {
  488. /* inc will overflow */
  489. if (ctx->Iv[bi] == 255) {
  490. ctx->Iv[bi] = 0;
  491. continue;
  492. }
  493. ctx->Iv[bi] += 1;
  494. break;
  495. }
  496. bi = 0;
  497. }
  498. buf[i] = (buf[i] ^ buffer[bi]);
  499. }
  500. }
  501. #endif // #if defined(CTR) && (CTR == 1)