/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_ #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template void MaximumMinimumBroadcastSlow(const RuntimeShape& unextended_input1_shape, const T* input1_data, const RuntimeShape& unextended_input2_shape, const T* input2_data, const RuntimeShape& unextended_output_shape, T* output_data, Op op) { // Uses element-wise calculation if broadcast is not required. if (unextended_input1_shape == unextended_input2_shape) { const int flat_size = MatchingElementsSize(unextended_input1_shape, unextended_input2_shape, unextended_output_shape); for (int i = 0; i < flat_size; ++i) { output_data[i] = op(input1_data[i], input2_data[i]); } } else { TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N); TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N); TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N); NdArrayDesc desc1; NdArrayDesc desc2; NdArrayDesc output_desc; NdArrayDescsForElementwiseBroadcast( unextended_input1_shape, unextended_input2_shape, &desc1, &desc2); CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape), &output_desc); auto maxmin_func = [&](int indexes[N]) { output_data[SubscriptToIndex(output_desc, indexes)] = op(input1_data[SubscriptToIndex(desc1, indexes)], input2_data[SubscriptToIndex(desc2, indexes)]); }; NDOpsHelper(output_desc, maxmin_func); } } } // namespace reference_ops } // namespace tflite #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_