/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/lite/kernels/internal/reference/maximum_minimum.h" #include "tensorflow/lite/c/builtin_op_data.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/quantization_util.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/op_macros.h" #include "tensorflow/lite/micro/kernels/kernel_util.h" namespace tflite { namespace ops { namespace micro { namespace maximum_minimum { namespace { // This file has a reference implementation of TFMaximum/TFMinimum. enum KernelType { kReference, }; constexpr int kInputTensor1 = 0; constexpr int kInputTensor2 = 1; constexpr int kOutputTensor = 0; struct OpContext { OpContext(TfLiteContext* context, TfLiteNode* node) { input1 = tflite::micro::GetEvalInput(context, node, kInputTensor1); input2 = tflite::micro::GetEvalInput(context, node, kInputTensor2); output = tflite::micro::GetEvalOutput(context, node, kOutputTensor); } const TfLiteEvalTensor* input1; const TfLiteEvalTensor* input2; TfLiteEvalTensor* output; }; struct MaximumOp { template static data_type op(data_type el1, data_type el2) { return el1 > el2 ? el1 : el2; } }; struct MinimumOp { template static data_type op(data_type el1, data_type el2) { return el1 < el2 ? el1 : el2; } }; } // namespace template void TFLiteOperation(TfLiteContext* context, TfLiteNode* node, const OpContext& op_context) { reference_ops::MaximumMinimumBroadcastSlow( tflite::micro::GetTensorShape(op_context.input1), tflite::micro::GetTensorData(op_context.input1), tflite::micro::GetTensorShape(op_context.input2), tflite::micro::GetTensorData(op_context.input2), tflite::micro::GetTensorShape(op_context.output), tflite::micro::GetTensorData(op_context.output), op_type::template op); } template TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpContext op_context(context, node); if (kernel_type == kReference) { switch (op_context.output->type) { case kTfLiteFloat32: TFLiteOperation(context, node, op_context); break; case kTfLiteUInt8: TFLiteOperation(context, node, op_context); break; case kTfLiteInt8: TFLiteOperation(context, node, op_context); break; case kTfLiteInt32: TFLiteOperation(context, node, op_context); break; case kTfLiteInt64: TFLiteOperation(context, node, op_context); break; default: TF_LITE_KERNEL_LOG(context, "Type %s (%d) is not supported by Maximum/Minimum.", TfLiteTypeGetName(op_context.output->type), op_context.output->type); return kTfLiteError; } } else { TF_LITE_KERNEL_LOG(context, "Kernel type not supported by Maximum/Minimum."); return kTfLiteError; } return kTfLiteOk; } } // namespace maximum_minimum TfLiteRegistration Register_MAXIMUM() { return {/*init=*/nullptr, /*free=*/nullptr, /*prepare=*/nullptr, /*invoke=*/ maximum_minimum::Eval, /*profiling_string=*/nullptr, /*builtin_code=*/0, /*custom_name=*/nullptr, /*version=*/0}; } TfLiteRegistration Register_MINIMUM() { return {/*init=*/nullptr, /*free=*/nullptr, /*prepare=*/nullptr, /*invoke=*/ maximum_minimum::Eval, /*profiling_string=*/nullptr, /*builtin_code=*/0, /*custom_name=*/nullptr, /*version=*/0}; } } // namespace micro } // namespace ops } // namespace tflite