| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/dequantize.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/quantize.h"
- #include "tensorflow/lite/kernels/internal/reference/requantize.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace dequantize {
- struct OpData {
- // The scaling factor from input to output (aka the 'real multiplier') can
- // be represented as a fixed point multiplier plus a left shift.
- int32_t output_multiplier;
- int output_shift;
- };
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- void* data = nullptr;
- if (context->AllocatePersistentBuffer(context, sizeof(OpData), &data) ==
- kTfLiteError) {
- return nullptr;
- }
- return data;
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- // TODO(b/140515557): Add cached dequant to improve hybrid model performance.
- const TfLiteTensor* input = GetInput(context, node, 0);
- TfLiteTensor* output = GetOutput(context, node, 0);
- TF_LITE_ENSURE(context, input->type == kTfLiteUInt8 ||
- input->type == kTfLiteInt8 ||
- input->type == kTfLiteInt16);
- TF_LITE_ENSURE(
- context, output->type == kTfLiteFloat32 || output->type == kTfLiteInt32);
- if (output->type == kTfLiteInt32) {
- const double effective_output_scale =
- static_cast<double>(input->params.scale) /
- static_cast<double>(output->params.scale);
- QuantizeMultiplier(effective_output_scale, &data->output_multiplier,
- &data->output_shift);
- }
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- const TfLiteTensor* input = GetInput(context, node, 0);
- TfLiteTensor* output = GetOutput(context, node, 0);
- if (output->type == kTfLiteFloat32) {
- tflite::DequantizationParams op_params;
- op_params.zero_point = input->params.zero_point;
- op_params.scale = static_cast<double>(input->params.scale);
- switch (input->type) {
- case kTfLiteUInt8:
- reference_ops::Dequantize(
- op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
- GetTensorShape(output), GetTensorData<float>(output));
- break;
- case kTfLiteInt8:
- reference_ops::Dequantize(
- op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
- GetTensorShape(output), GetTensorData<float>(output));
- break;
- case kTfLiteInt16:
- reference_ops::Dequantize(
- op_params, GetTensorShape(input), GetTensorData<int16_t>(input),
- GetTensorShape(output), GetTensorData<float>(output));
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else if (output->type == kTfLiteInt32) {
- int flat_size =
- MatchingFlatSize(GetTensorShape(input), GetTensorShape(output));
- switch (input->type) {
- case kTfLiteInt16: {
- reference_ops::Requantize(
- GetTensorData<int16_t>(input), flat_size, data->output_multiplier,
- data->output_shift, input->params.zero_point,
- output->params.zero_point, GetTensorData<int32_t>(output));
- break;
- }
- case kTfLiteInt8: {
- reference_ops::Requantize(
- GetTensorData<int8_t>(input), flat_size, data->output_multiplier,
- data->output_shift, input->params.zero_point,
- output->params.zero_point, GetTensorData<int32_t>(output));
- break;
- }
- default:
- TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else {
- TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace dequantize
- TfLiteRegistration* Register_DEQUANTIZE() {
- // TODO(b/149408647): Once we remove AddBuiltin from MicroOpResolver and
- // completely switch to the templated AddBuiltin from MicroMutableOpResolver,
- // this struct no longer needs to be static and can be returned by value.
- static TfLiteRegistration r = {/*init=*/dequantize::Init,
- /*free=*/nullptr,
- /*prepare=*/dequantize::Prepare,
- /*invoke=*/dequantize::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- return &r;
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|