| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/pad.h"
- #include <string.h>
- #include "tensorflow/lite/kernels/internal/types.h"
- #ifdef MEMORY_SANITIZER
- #include <sanitizer/msan_interface.h>
- #else
- #define __msan_check_mem_is_initialized(ptr, size)
- #endif
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace pad {
- struct PadContext {
- PadContext(TfLiteContext* context, TfLiteNode* node) {
- input = GetInput(context, node, 0);
- paddings = GetInput(context, node, 1);
- constant_values = nullptr;
- if (NumInputs(node) == 3) {
- constant_values = GetOptionalInputTensor(context, node, 2);
- } else {
- constant_values = nullptr;
- }
- output = GetOutput(context, node, 0);
- dims = NumDimensions(input);
- resizing_category = ResizingCategory::kGenericResize;
- const int paddings_total = GetTensorShape(paddings).FlatSize();
- const int32* paddings_data = GetTensorData<int32>(paddings);
- // Paddings will be a n,2 array, and we need to detect 4D arrays with the
- // pattern { {0,0}, {a, b}, {c, d}, {0,0} }.
- if (IsConstantTensor(paddings) && paddings_total == 8 &&
- (paddings_data[0] == 0 && paddings_data[1] == 0) &&
- (paddings_data[6] == 0 && paddings_data[7] == 0)) {
- resizing_category = ResizingCategory::kImageStyle;
- }
- }
- const TfLiteTensor* constant_values;
- const TfLiteTensor* input;
- const TfLiteTensor* paddings;
- TfLiteTensor* output;
- int dims;
- ResizingCategory resizing_category;
- };
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TF_LITE_ENSURE(context, NumInputs(node) == 2 || NumInputs(node) == 3);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- PadContext op_context(context, node);
- TF_LITE_ENSURE_EQ(context, op_context.input->type, op_context.output->type);
- if (op_context.constant_values != nullptr) {
- TF_LITE_ENSURE_EQ(context, op_context.input->type,
- op_context.constant_values->type);
- }
- // There must be a pair of paddings for each output dimension.
- TF_LITE_ENSURE_EQ(context, GetTensorShape(op_context.paddings).FlatSize(),
- op_context.output->dims->size * 2);
- // On Micro, outputs must be properly sized by the converter.
- const int32* paddings_data = GetTensorData<int32>(op_context.paddings);
- for (int i = 0; i < op_context.output->dims->size; i++) {
- int output_dim = op_context.output->dims->data[i];
- int expected_dim = op_context.input->dims->data[i] + paddings_data[i * 2] +
- paddings_data[i * 2 + 1];
- TF_LITE_ENSURE_EQ(context, output_dim, expected_dim);
- }
- // Current implementations rely on the inputs being <= 4D.
- TF_LITE_ENSURE(
- context, op_context.dims <= reference_ops::PadKernelMaxDimensionCount());
- TF_LITE_ENSURE(context, IsConstantTensor(op_context.paddings));
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- PadContext op_context(context, node);
- if (op_context.constant_values != nullptr) {
- // Ensure that constant_values is a scalar.
- TF_LITE_ENSURE_EQ(context, NumElements(op_context.constant_values), 1);
- }
- // Create before and after padding arrays that are accepted by the kernel.
- const int32* paddings_data = GetTensorData<int32>(op_context.paddings);
- tflite::PadParams op_params;
- memset(&op_params, 0, sizeof(PadParams));
- op_params.left_padding_count = op_context.dims;
- op_params.right_padding_count = op_context.dims;
- for (int idx = op_context.dims - 1; idx >= 0; --idx) {
- op_params.left_padding[idx] = paddings_data[idx * 2];
- op_params.right_padding[idx] = paddings_data[idx * 2 + 1];
- }
- #define TF_LITE_PAD(type, op_name, scalar, pad_value) \
- const scalar pad_value_copy = pad_value; \
- \
- type::op_name(op_params, GetTensorShape(op_context.input), \
- GetTensorData<scalar>(op_context.input), &pad_value_copy, \
- GetTensorShape(op_context.output), \
- GetTensorData<scalar>(op_context.output))
- switch (op_context.input->type) {
- case kTfLiteFloat32: {
- float pad_value = op_context.constant_values == nullptr
- ? 0.f
- : *GetTensorData<float>(op_context.constant_values);
- if (op_context.resizing_category == ResizingCategory::kImageStyle) {
- TF_LITE_PAD(reference_ops, PadImageStyle, float, pad_value);
- } else {
- TF_LITE_PAD(reference_ops, Pad, float, pad_value);
- }
- } break;
- case kTfLiteUInt8: {
- uint8_t pad_value;
- if (op_context.constant_values == nullptr) {
- // Quantized Pad requires that 0 is represented in the quantized
- // range.
- TF_LITE_ENSURE(context, op_context.output->params.zero_point >=
- std::numeric_limits<uint8_t>::min());
- TF_LITE_ENSURE(context, op_context.output->params.zero_point <=
- std::numeric_limits<uint8_t>::max());
- pad_value = static_cast<uint8_t>(op_context.output->params.zero_point);
- } else {
- // Quantized Pad requires that 'constant_values' is represented in the
- // same quantized range as the input and output tensors.
- TF_LITE_ENSURE_EQ(context, op_context.output->params.zero_point,
- op_context.constant_values->params.zero_point);
- TF_LITE_ENSURE_EQ(
- context, static_cast<double>(op_context.output->params.scale),
- static_cast<double>(op_context.constant_values->params.scale));
- pad_value = *GetTensorData<uint8_t>(op_context.constant_values);
- }
- if (op_context.resizing_category == ResizingCategory::kImageStyle) {
- TF_LITE_PAD(reference_ops, PadImageStyle, uint8_t, pad_value);
- } else {
- TF_LITE_PAD(reference_ops, Pad, uint8_t, pad_value);
- }
- } break;
- case kTfLiteInt8: {
- int8_t pad_value;
- if (op_context.constant_values == nullptr) {
- // Quantized Pad requires that 0 is represented in the quantized
- // range.
- TF_LITE_ENSURE(context, op_context.output->params.zero_point >=
- std::numeric_limits<int8_t>::min());
- TF_LITE_ENSURE(context, op_context.output->params.zero_point <=
- std::numeric_limits<int8_t>::max());
- pad_value = static_cast<int8_t>(op_context.output->params.zero_point);
- } else {
- // Quantized Pad requires that 'constant_values' is represented in the
- // same quantized range as the input and output tensors.
- TF_LITE_ENSURE_EQ(context, op_context.output->params.zero_point,
- op_context.constant_values->params.zero_point);
- TF_LITE_ENSURE(context, op_context.output->params.scale ==
- op_context.constant_values->params.scale);
- pad_value = *GetTensorData<int8_t>(op_context.constant_values);
- }
- if (op_context.resizing_category == ResizingCategory::kImageStyle) {
- TF_LITE_PAD(reference_ops, PadImageStyle, int8_t, pad_value);
- } else {
- TF_LITE_PAD(reference_ops, Pad, int8_t, pad_value);
- }
- } break;
- case kTfLiteInt32: {
- int32_t pad_value =
- op_context.constant_values == nullptr
- ? 0
- : *GetTensorData<int32_t>(op_context.constant_values);
- TF_LITE_PAD(reference_ops, Pad, int32_t, pad_value);
- } break;
- default:
- TF_LITE_KERNEL_LOG(context, "Type %s not currently supported by Pad.",
- TfLiteTypeGetName(op_context.input->type));
- return kTfLiteError;
- }
- #undef TF_LITE_PAD
- return kTfLiteOk;
- }
- } // namespace pad
- TfLiteRegistration* Register_PAD() {
- static TfLiteRegistration r = {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/pad::Prepare,
- /*invoke=*/pad::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- return &r;
- }
- // Also register Pad as PadV2.
- TfLiteRegistration* Register_PADV2() {
- static TfLiteRegistration r = {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/pad::Prepare,
- /*invoke=*/pad::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- return &r;
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|