| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/micro_optional_debug_tools.h"
- // `cinttypes` requires `__STDC_FORMAT_MACROS` to be defined to expose `PRId32`.
- #ifndef __STDC_FORMAT_MACROS
- #define __STDC_FORMAT_MACROS
- #endif
- #include <cinttypes>
- #include <cstddef>
- #include <cstdint>
- #include <cstdio>
- #include <vector>
- #include "flatbuffers/flatbuffers.h" // from @flatbuffers
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/micro/micro_allocator.h"
- #include "tensorflow/lite/micro/micro_interpreter.h"
- #include "tensorflow/lite/schema/schema_generated.h"
- namespace tflite {
- namespace {
- std::vector<int> flatbuffersVector2StdVector(
- const flatbuffers::Vector<int32_t>& fVector) {
- std::vector<int> stdVector;
- stdVector.reserve(fVector.size());
- for (size_t i = 0; i < fVector.size(); i++) {
- stdVector.push_back(fVector.Get(i));
- }
- return stdVector;
- }
- void PrintIntVector(const std::vector<int>& v) {
- for (const auto& it : v) {
- printf(" %d", it);
- }
- printf("\n");
- }
- void PrintTfLiteIntVector(const TfLiteIntArray* v) {
- if (!v) {
- printf(" (null)\n");
- return;
- }
- for (int k = 0; k < v->size; k++) {
- printf(" %d", v->data[k]);
- }
- printf("\n");
- }
- const char* TensorTypeName(TfLiteType type) {
- switch (type) {
- case kTfLiteNoType:
- return "kTfLiteNoType";
- case kTfLiteFloat32:
- return "kTfLiteFloat32";
- case kTfLiteInt32:
- return "kTfLiteInt32";
- case kTfLiteUInt8:
- return "kTfLiteUInt8";
- case kTfLiteInt8:
- return "kTfLiteInt8";
- case kTfLiteInt64:
- return "kTfLiteInt64";
- case kTfLiteString:
- return "kTfLiteString";
- case kTfLiteBool:
- return "kTfLiteBool";
- case kTfLiteInt16:
- return "kTfLiteInt16";
- case kTfLiteComplex64:
- return "kTfLiteComplex64";
- case kTfLiteFloat16:
- return "kTfLiteFloat16";
- case kTfLiteFloat64:
- return "kTfLiteFloat64";
- }
- return "(invalid)";
- }
- const char* AllocTypeName(TfLiteAllocationType type) {
- switch (type) {
- case kTfLiteMemNone:
- return "kTfLiteMemNone";
- case kTfLiteMmapRo:
- return "kTfLiteMmapRo";
- case kTfLiteDynamic:
- return "kTfLiteDynamic";
- case kTfLiteArenaRw:
- return "kTfLiteArenaRw";
- case kTfLiteArenaRwPersistent:
- return "kTfLiteArenaRwPersistent";
- case kTfLitePersistentRo:
- return "kTfLitePersistentRo";
- }
- return "(invalid)";
- }
- } // namespace
- // Prints a dump of what tensors and what nodes are in the interpreter.
- void PrintInterpreterState(MicroInterpreter* interpreter) {
- printf("Interpreter has %zu tensors and %zu nodes\n",
- interpreter->tensors_size(), interpreter->operators_size());
- printf("Inputs:");
- PrintIntVector(flatbuffersVector2StdVector(interpreter->inputs()));
- printf("Outputs:");
- PrintIntVector(flatbuffersVector2StdVector(interpreter->outputs()));
- printf("\n");
- for (size_t tensor_index = 0; tensor_index < interpreter->tensors_size();
- tensor_index++) {
- TfLiteTensor* tensor = interpreter->tensor(static_cast<int>(tensor_index));
- printf("Tensor %3zu %-20s %10s %15s %10zu bytes (%4.1f MB) ", tensor_index,
- tensor->name, TensorTypeName(tensor->type),
- AllocTypeName(tensor->allocation_type), tensor->bytes,
- static_cast<double>(tensor->bytes / (1 << 20)));
- PrintTfLiteIntVector(tensor->dims);
- }
- printf("\n");
- for (size_t node_index = 0; node_index < interpreter->operators_size();
- node_index++) {
- const NodeAndRegistration node_and_reg =
- interpreter->node_and_registration(static_cast<int>(node_index));
- const TfLiteNode& node = node_and_reg.node;
- const TfLiteRegistration* reg = node_and_reg.registration;
- if (reg->custom_name != nullptr) {
- printf("Node %3zu Operator Custom Name %s\n", node_index,
- reg->custom_name);
- } else {
- printf("Node %3zu Operator Builtin Code %3" PRId32 " %s\n", node_index,
- reg->builtin_code, EnumNamesBuiltinOperator()[reg->builtin_code]);
- }
- printf(" Inputs:");
- PrintTfLiteIntVector(node.inputs);
- printf(" Outputs:");
- PrintTfLiteIntVector(node.outputs);
- }
- }
- } // namespace tflite
|