| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/mul.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/mul.h"
- #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/memory_helpers.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace mul {
- namespace {
- constexpr int kInput1Tensor = 0;
- constexpr int kInput2Tensor = 1;
- constexpr int kOutputTensor = 0;
- struct OpData {
- int32_t input1_zero_point;
- int32_t input2_zero_point;
- int32_t output_activation_min;
- int32_t output_activation_max;
- int32_t output_zero_point;
- int32_t output_multiplier;
- int output_shift;
- float output_activation_min_f32;
- float output_activation_max_f32;
- };
- TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
- TfLiteMulParams* params, OpData* data) {
- const TfLiteTensor* input1 = GetInput(context, node, kInput1Tensor);
- const TfLiteTensor* input2 = GetInput(context, node, kInput2Tensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
- if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
- TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
- context, params->activation, output, &data->output_activation_min,
- &data->output_activation_max));
- double real_multiplier = static_cast<double>(input1->params.scale) *
- static_cast<double>(input2->params.scale) /
- static_cast<double>(output->params.scale);
- QuantizeMultiplier(real_multiplier, &data->output_multiplier,
- &data->output_shift);
- data->input1_zero_point = input1->params.zero_point;
- data->input2_zero_point = input2->params.zero_point;
- data->output_zero_point = output->params.zero_point;
- } else {
- CalculateActivationRange(params->activation,
- &data->output_activation_min_f32,
- &data->output_activation_max_f32);
- }
- return kTfLiteOk;
- }
- } // namespace
- void EvalQuantized(TfLiteContext* context, TfLiteNode* node, const OpData* data,
- const TfLiteEvalTensor* input1,
- const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
- tflite::ArithmeticParams op_params = {};
- op_params.quantized_activation_min = data->output_activation_min;
- op_params.quantized_activation_max = data->output_activation_max;
- op_params.float_activation_max = data->output_activation_max_f32;
- op_params.input1_offset = -data->input1_zero_point;
- op_params.input2_offset = -data->input2_zero_point;
- op_params.output_offset = data->output_zero_point;
- op_params.output_multiplier = data->output_multiplier;
- op_params.output_shift = data->output_shift;
- bool need_broadcast = reference_ops::ProcessBroadcastShapes(
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorShape(input2), &op_params);
- if (output->type == kTfLiteInt8) {
- if (need_broadcast) {
- reference_integer_ops::BroadcastMul4DSlow(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<int8_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<int8_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- } else {
- reference_integer_ops::Mul(op_params,
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<int8_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<int8_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- }
- } else if (output->type == kTfLiteUInt8) {
- if (need_broadcast) {
- reference_integer_ops::BroadcastMul4DSlow(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<uint8_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<uint8_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- } else {
- reference_integer_ops::Mul(op_params,
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<uint8_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<uint8_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- }
- }
- }
- void EvalFloat(TfLiteContext* context, TfLiteNode* node,
- TfLiteMulParams* params, const OpData* data,
- const TfLiteEvalTensor* input1, const TfLiteEvalTensor* input2,
- TfLiteEvalTensor* output) {
- tflite::ArithmeticParams op_params = {};
- op_params.float_activation_min = data->output_activation_min_f32;
- op_params.float_activation_max = data->output_activation_max_f32;
- bool need_broadcast = reference_ops::ProcessBroadcastShapes(
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorShape(input2), &op_params);
- if (need_broadcast) {
- reference_ops::BroadcastMul4DSlow(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<float>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<float>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- } else {
- reference_ops::Mul(op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<float>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<float>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- }
- }
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
- TFLITE_DCHECK(node->user_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- return CalculateOpData(context, node, params, data);
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
- TFLITE_DCHECK(node->user_data != nullptr);
- const OpData* data = static_cast<const OpData*>(node->user_data);
- const TfLiteEvalTensor* input1 =
- tflite::micro::GetEvalInput(context, node, kInput1Tensor);
- const TfLiteEvalTensor* input2 =
- tflite::micro::GetEvalInput(context, node, kInput2Tensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- switch (input1->type) {
- case kTfLiteUInt8:
- case kTfLiteInt8:
- EvalQuantized(context, node, data, input1, input2, output);
- break;
- case kTfLiteFloat32:
- EvalFloat(context, node, params, data, input1, input2, output);
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
- TfLiteTypeGetName(input1->type), input1->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace mul
- TfLiteRegistration Register_MUL() {
- return {/*init=*/mul::Init,
- /*free=*/nullptr,
- /*prepare=*/mul::Prepare,
- /*invoke=*/mul::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|